[1] 岑海燕, 朱月明, 孙大伟. 深度学习在植物表型研究中的应用现状与展望[J]. 农业工程学报, 2020, 26(9): 1-16.
Cen Haiyan, Zhu Yueming, Sun Dawei, et al. Current status and future perspective of the application of deep learning in plant phenotype research [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 26(9): 1-16.
[2] 姚仁秀, 陈燕, 吕晓琴, 等. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 23-37.
Yao Renxiu, Chen Yan, Lü Xiaoqin, et al. Altituderelated environmental factors shape the phenotypic characteristics and chemical profile of rhododendron [J]. Biodiversity Science, 2023, 31(2): 23-37.
[3] 朱润军, 杨巧, 李仕杰, 等. 植物表型可塑性对环境因子的响应研究进展[J]. 西南林业大学学报(自然科学), 2021, 41(1): 183-187.
Zhu Runjun, Yang Qiao, Li Shijie, et al. Advances at phenotypic plasticity in plant responses to environmental factors [J]. Journal of Southwest Forestry University (Natural Science), 2021, 41(1): 183-187.
[4] 卢鹏, 金静静, 曹培健, 等. 植物及烟草表型组学大数据研究进展[J]. 烟草科技, 2021, 54(3): 90-100, 112.
Lu Peng, Jin Jingjing, Cao Peijian, et al. Progress on plant phenomics big data and their application in tobacco research [J]. Tobacco Science & Technology, 2021, 54(3): 90-100, 112.
[5] 王春颖, 泮玮婷, 李祥, 等. 基于STLSTM的植物生长发育预测模型[J]. 农业机械学报, 2022, 53(6): 250-258.
Wang Chunying, Pan Weiting, Li Xiang, et al. Plant growth and development prediction model based on STLSTM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 250-258.
[6] 王映龙, 肖欢, 殷华, 等. 基于RGBD相机的黑皮鸡枞菌子实体形态视觉测量[J]. 农业工程学报, 2022, 28(20): 140-148.
Wang Yinglong, Xiao Huan, Yin Hua, et al. Measurement of morphology of oudemansiella raphanipies based on RGBD camera [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 28(20): 140-148.
[7] 陈旭波, 章雨希, 张亚芬, 等. 入侵植物藿香蓟表型可塑性对种间竞争的响应[J]. 植物科学学报, 2023, 41(1): 37-43.
Chen Xubo, Zhang Yuxi, Zhang Yafen, et al. Response of phenotypic plasticity of invasive Ageratum conyzoides L. to interspecific competition [J]. Plant Science Journal, 2023, 41(1): 37-43.
[8] 王红梅, 路宁娜, 陈小爽, 等. 两种同域分布的马先蒿属植物花特征与报酬间的相关性及表型选择[J]. 兰州大学学报(自然科学版), 2022, 58(3): 292-297, 305.
[9] 娄路, 吕惠, 宋然. 基于多视角时间序列图像的植物叶片分割与特征提取[J]. 农业机械学报, 2022, 53(1): 253-260.
Lou Lu, Lü Hui, Song Ran. Segmentation of plant leaves and features extraction based on mutiview and timeseries image [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 253-260.
[10] 袁山, 汤浩, 郭亚. 基于改进Mask R-CNN模型的植物叶片分割方法[J]. 农业工程学报, 2022, 28(1): 212-220.
Yuan Shan, Tang Hao, Guo Ya. Segmentation method for plant leaves using an improved Mask R-CNN model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 28(1): 212-220.
[11] 王晓婷, 赵展, 王阳, 等. 基于改进Mask R-CNN的植物表型智能检测算法[J]. 中国农机化学报, 2022, 43(8): 151-157.
Wang Xiaoting, Zhao Zhan, Wang Yang, et al. Intelligent detection algorithm of plant phenotype based on improved Mask R-CNN[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 151-157.
[12] 邹龙, 王以松, 魏昆鹏, 等. LU-ReNet植物叶片分割与计数模型[J]. 计算机工程与设计, 2022, 43(2): 553-559.
Zou Long, Wang Yisong, Wei Kunpeng, et al. LU-ReNet plant leaf segmentation and counting model [J]. Computer Engineering and Design, 2022, 43(2): 553-559.
[13] Zhao D, Ma H, Yang Z, et al. Finger vein recognition based on lightweight CNN combining center loss and dynamic regularization [J]. Infrared Physics & Technology, 2020, 105(8): 103221.
[14] 杨万里, 段凌凤, 杨万能. 基于深度学习的水稻表型特征提取和穗质量预测研究[J]. 华中农业大学学报, 2021, 40(1): 227-235.
Yang Wanli, Duan Lingfeng, Yang Wanneng, et al. Deep learningbased extraction of rice phenotypic characteristics and prediction of rice panicle weight [J]. Journal of Huazhong Agricultural University, 2021, 40(1): 227-235.
[15] 姜妍, 王琳, 杨月, 等. 无人机高光谱成像技术在作物生长信息监测中的应用[J]. 东北农业大学学报, 2022, 53(3): 88-96.
Jiang Yan, Wang Lin, Yang Yue, et al. Application of UAV hyperspectral imaging technology in crop growth information monitoring [J]. Journal of Northeast Agricultural University, 2022, 53(3): 88-96.
[16] 张卫正, 李旭光, 万瀚文, 等. 基于骨架提取和二叉树分析的玉米植株图像茎叶分割方法[J].河南农业科学, 2020, 49(9): 166-172.
Zhang Weizheng, Li Xuguang, Wan Hanwen, et al. Stem and leaf segmentation of maize plant image based on skeleton extraction and binary tree analysis [J]. Journal of Henan Agricultural Sciences, 2020, 49(9): 166-172.
[17] 王鹤树, 曹丽英. 基于全卷积神经网络的植物叶片自动分割及表型解析[J]. 中国农机化学报, 2021, 42(8): 161-168.
Wang Heshu, Cao Liying. Automatic segmentation and phenotypic analysis of plant leaves based on fully convolutional networks [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 161-168.
[18] 胡玲艳, 许巍, 秦山, 等. 基于分时重叠算法的欧洲甜樱桃表型关键特征区域图像分割方法[J]. 江苏农业科学, 2023, 51(1): 195-202.
Hu Lingyan, Xu Wei, Qin Shan, et al. Image segmentation of key feature regions of European sweet cherry phenotype based on timesharing overlap algorithm [J]. Jiangsu Agricultural Sciences, 2023, 51(1): 195-202.
[19] 李少辰, 张爱武, 张希珍, 等. 叶片尺度的玉米幼苗三维表型信息提取方法[J]. 激光与光电子学进展, 2023, 60(2): 61-69.
Li Shaochen, Zhang Aiwu, Zhang Xizhen, et al. 3D phenotypic information extraction method of maize seedlings at leaf scale [J]. Laser & Optoelectronics Progress, 2023, 60(2): 61-69.
|