[1] 于雷, 章涛, 朱亚星, 等. 基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值[J]. 农业工程学报, 2018, 34(16): 148-154.
Yu Lei, Zhang Tao, Zhu Yaxing, et al. Determination of soybean leaf SPAD value using characteristic wavelength variables preferably selected by IRIV algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 148-154.
[2] Singhal G, Bansod B, Mathew L, et al. Chlorophyll estimation using multispectral unmanned aerial system based on machine learning techniques [J]. Remote Sensing Applications: Society and Environment, 2019, 15: 100235.
[3] Wang X, Li Z, Wang W, et al. Chlorophyll content for millet leaf using hyperspectral imaging and an attentionconvolutional neural network [J]. Ciência Rural, 2020, 50(3).
[4] Nofrizal A Y, Sonobe R, Yamashita H, et al. Estimating chlorophyll content of Zizania latifolia with hyperspectral data and random forest [J]. International Journal of Engineering and Geosciences, 2022, 7(3): 221-228.
[5] 赖佳政, 李贝贝, 程翔, 等. 基于无人机高光谱遥感的烤烟叶片叶绿素含量估测[J]. 智慧农业(中英文), 2023, 5(2): 68-81.
Lai Jiazheng, Li Beibei, Cheng Xiang, et al. Monitoring of leaf chlorophyll content in fluecured tobacco based on hyperspectral remote sensing of unmannedaerial vehicle [J]. Smart Agriculture, 2023, 5(2): 68-81.
[6] Bhadra S, Sagan V, Maimaitijiang M, et al. Quantifying leaf chlorophyll concentration of sorghum from hyperspectral data using derivative calculus and machine learning [J]. Remote Sensing, 2020, 12(13): 2082.
[7] Kanning M, Kühling I, Trautz D, et al. Highresolution uavbased hyperspectral imagery for lai and chlorophyll estimations from wheat for yield prediction [J]. Remote Sensing, 2018, 10(12): 2000.
[8] 刘爽, 于海业, 张郡赫, 等. 基于最优光谱指数的大豆叶片叶绿素含量反演模型研究[J]. 光谱学与光谱分析, 2021, 41(6): 1912-1919.
Liu Shuang, Yu Haiye, Zhang Junhe, et al. Study on inversion model of chlorophyll content in soybean leaf based on optimal specrtal indices [J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1912-1919.
[9] Kennard R W, Stone L A. Computer aided design of experiments [J]. Technometrics, 1969, 11: 137.
[10] 刘伟, 赵众, 袁洪福, 等. 光谱多元分析校正集和验证集样本分布优选方法研究[J]. 光谱学与光谱分析, 2014, 34(4): 947-951.
Liu Wei, Zhao Zhong, Yuan Hongfu, et al. An optimal selection method of samples of calibration set and validation set for spectral multivariate analysis [J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 947-951.
[11] Li H, Liang Y, Xu Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration [J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
[12] 撒继铭, 江河, 谢凯文, 等. 基于随机蛙跳算法的特征波长优选[J]. 光学学报, 2021, 41(15): 235-243.
Sa Jiming, Jiang He, Xie Kaiwen, et al. Characteristic wavelength optimization based on random frog algorithm [J]. Acta Optica Sinica, 2021, 41(15): 235-243.
[13] 胡会强, 位云朋, 徐华兴, 等. 基于高光谱成像技术和主成分分析对粉葛年限的鉴别[J]. 光谱学与光谱分析, 2023, 43(6): 1953-1960.
Hu Huiqiang, Wei Yunpeng, Xu Huaxing, et al. Identification of the age of puerariae thomsonii radix based on hyperspectral imaging and principal component analysis [J]. Spectroscopy and Spectral Analysis, 2023, 43(6): 1953-1960.
[14] 张俊逸, 高德华, 宋迪, 等. PROSPECT模型的特征波长优化与作物叶绿素含量检测[J]. 光谱学与光谱分析, 2022, 42(5): 1514-1521.
Zhang Junyi, Gao Dehua, Song Di, et al. Wavelengths optimization and chlorophyll content detection based on prospect model [J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1514-1521.
[15] Yun Y, Wang W, Tan M, et al. A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration [J]. Analytica Chimica Acta, 2014, 807: 36-43.
[16] 孙红, 郑涛, 刘宁, 等. 高光谱图像检测马铃薯植株叶绿素含量垂直分布[J]. 农业工程学报, 2018, 34(1): 149-156.
Sun Hong, Zheng Tao, Liu Ning, et al. Vertical distribution of chlorophyll in potato plants based on hyperspectral imaging [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 149-156.
[17] 符欣彤, 常庆瑞, 张佑铭, 等. 基于Stacking集成学习的猕猴桃叶片叶绿素含量估算[J]. 干旱地区农业研究, 2023, 41(4): 247-256.
Fu Xintong, Chang Qingrui, Zhang Youming, et al. Estimation of kiwifruit leaf chlorophyll content based on Stacking ensemble learning [J]. Agricultural Research in the Arid Areas, 2023, 41(4): 247-256.
[18] 刘子扬, 冯帅, 赵冬雪, 等. 无人机高光谱遥感的水稻叶瘟病的光谱特征提取与检测方法研究[J]. 光谱学与光谱分析, 2024, 44(5): 1457-1463.
Liu Ziyang, Feng Shuai, Zhao Dongxue, et al. Research on spectral feature extraction and detection method of rice leaf blast by UAV hyperspectral remote sensing [J]. Spectroscopy and Spectral Analysis, 2024, 44(5): 1457-1463.
[19] 梁琨, 刘全祥, 潘磊庆, 等. 基于高光谱和CARS-IRIV算法的‘库尔勒香梨’可溶性固形物含量检测[J]. 南京农业大学学报, 2018, 41(4): 760-766.
Liang Kun,Liu Quanxiang,Pan Leiqing, et al. Detection of soluble solids content in ‘Korla fragrant pear’ based on hyperspectral imaging and CARS-IRIV algorithm [J]. Journal of Nanjing Agricultural University, 2018, 41(4): 760-766.
[20] 江凯伦, 安吉庆, 赵雨薇, 等. 采用RNCA-PSO-ELM的水稻叶绿素光谱特征分析与反演[J]. 农业工程学报, 2022, 38(8): 178-186.
Jiang Kailun, An Jiqing, Zhao Yuwei, et al. Analysis and inversion of rice chlorophyll spectral characteristics using RNCA-PSO-ELM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 178-186.
[21] 张智韬, 王海峰, Karnieli A, 等. 基于岭回归的土壤含水率高光谱反演研究[J]. 农业机械学报, 2018, 49(5): 240-248.
Zhang Zhitao, Wang Haifeng, Karnieli A, et al. Inversion of soil moisture content from hyperspectra based on ridge regression [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 240-248.
[22] 彭涛, 赵丽, 张爱军, 等. 土壤全氮的无人机高光谱响应特征及估测模型构建[J]. 农业工程学报, 2023, 39(4): 92-101.
Peng Tao, Zhao Li, Zhang Aijun, et al. UAV hyperspectral response characteristics and estimation model construction of soil total nitrogen [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(4): 92-101.
|