English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (12): 154-161.DOI: 10.13733/j.jcam.issn.20955553.2024.12.023

• 农业信息化工程 • 上一篇    下一篇

基于高光谱的猕猴桃叶片叶绿素含量智能检测研究

霍迎秋1, 2, 3,凌晨东1,孙江昊1,蔡嘉甜1,胡少军1, 2, 3   

  1. (1. 西北农林科技大学信息工程学院,陕西杨凌,712100; 2. 陕西省农业信息智能感知与分析工程技术研究中心,陕西杨凌,712100; 3. 农业农村部农业物联网重点实验室,陕西杨凌,712100)
  • 出版日期:2024-12-15 发布日期:2024-12-02
  • 基金资助:
    陕西省重点研发计划项目(2023—YBNY—080);陕西省自然科学基础研究计划(2023—JC—YB—489);西安市科技计划(24NYGG0031);国家级大学生创新训练计划项目(202310712098)

Intelligent detection of chlorophyll content in kiwifruit leaves based on hyperspectroscopy

Huo Yingqiu1, 2, 3, Ling Chendong1, Sun Jianghao1, Cai Jiatian1, Hu Shaojun1, 2, 3   

  1. (1. College of Information Engineering, Northwest A & F University, Yangling, 712100, China; 2. Research Center of Shaanxi Agricultural Information Intelligent Perception and Analysis Engineering Technology, Yangling, 712100, China; 3. Key Laboratory for Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China)
  • Online:2024-12-15 Published:2024-12-02

摘要:

为准确实时分析猕猴桃树的生长健康状况,以陕西关中平原猕猴桃树为研究对象,构建叶片高光谱数据集;基于随机法和Kennard-Stone方法划分数据集,采用竞争自适应重加权采样算法(CARS)、主成分分析法(PCA)和迭代保留信息变量算法(IRIV)提取样本的特征波段;进而采用多元线性回归(MLR)、岭回归(RR)、偏最小二乘回归(PLSR)、支持向量回归(SVR)和随机森林回归(RFR)等方法建立叶片叶绿素含量智能检测模型。模型对比分析表明,基于CARS算法所提取的81个特征波段建立的CARS-RR模型预测效果最好,验证集上的R2为0.86,RMSE为2.71。因此,提出的智能检测模型能够基于光谱信息无损检测猕猴桃树叶绿素含量,进而分析果园整体健康状况,为后续果园精细化管理提供决策支撑。

关键词: 猕猴桃, 叶绿素含量, 回归模型, 高光谱, 波段提取

Abstract:

To accurately and precisely analyze the growth and health status of kiwifruit trees, a leaf hyperspectral dataset was constructed using kiwifruit trees in the Guanzhong Plain of Shaanxi Province. The dataset was divided based on the stochastic method and the Kennard-Stone method, and the characteristic bands of the samples were extracted using the competitive adaptive reweighted sampling (CARS), principal component analysis (PCA), and iteratively retains informative variables (IRIV) algorithms. Multiple linear regression (MLR), ridge regression (RR), partial least squares regression (PLSR), support vector regression (SVR) and random forest regression (RFR) were used to establish an intelligent detection model for leaf chlorophyll content. Comparative analysis of the models showed that the CARS-RR model based on the 81 feature bands extracted by the CARS algorithm had the best prediction effect, with an R2 of 0.86 and an RMSE of 2.71 on the validation set. Therefore, the proposed intelligent detection model can detect the chlorophyll content of kiwifruit trees based on the spectral information in a nondestructive manner. Furthermore, it can analyze the overall health status of the orchard, providing decision-making support for subsequent refined orchard management.

Key words: kiwifruit, chlorophyll content, regression model, hyperspectroscopy, characteristic bands extraction

中图分类号: