[1] Qi Haixia, Wu Zeyu, Zhang Lei, et al. Monitoring of peanut leaves chlorophyll content based on dronebased multispectral image feature extraction [J]. Computers and Electronics in Agriculture, 2021,187: 106292.
[2] Zhou Wei, Shi Runhe, Wu Nan, et al. Spectral response and the retrieval of canopy chlorophyll content under interspecific competition in wetlandscase study of wetlands in the Yangtze River Estuary [J]. Earth Science Informatics, 2021(14): 1467-1486.
[3] Kochubey S M, Kazantsev T A. Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content [J]. Journal of Plant Physiology, 2007, 164(12): 1648-1655.
[4] 陈鹏, 冯海宽, 李长春, 等. 无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量[J]. 农业工程学报, 2019, 35(11): 63-74.
Chen Peng, Feng Haikuan, Li Changchun, et al. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 63-74.
[5] Peng Yi, Gitelson A A. Application of chlorophyllrelated vegetation indices for remote estimation of maize productivity [J]. Agricultural and Forest Meteorology, 2011, 151(9): 1267-1276.
[6] Erhard E. Pfündel. Simultaneously measuring pulseamplitudemodulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm [J].Photosynthesis Research, 2021(147): 345-358.
[7] Li H, Wei Z, Wang X, et al. Spectral characteristics of reclaimed vegetation in a rare earth mine and analysis of its correlation with the chlorophyll content [J]. Journal of Applied Spectroscopy, 2020, 87(3): 553-562.
[8] Zhu Wenjing, Li Jinyan, Li Lin, et al. Nondestructive diagnostics of soluble sugar, total nitrogen and their ratio of tomato leaves in greenhouse by polarized spectrahyperspectral data fusion [J]. Agricultural and Biological Engineering, 2020, 13(2): 189-197.
[9] 毛智慧, 邓磊, 孙杰, 等. 无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究[J]. 光谱学与光谱分析, 2018, 38(9): 2923-2931.Mao Zhihui, Deng Lei, Sun Jie, et al. Research on the application of UAV multispectral remote sensing in the maize chlorophyll prediction [J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2923-2931.
[10] Zhu Wanxue, Sun Zhigangm, Yang Ting, et al. Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multiscales [J]. Computers and Electronics in Agriculture, 2020, 178: 105786.
[11] Chen Shaomin, Ma Lihui, Hu Tiantian, et al. Nitrogen content diagnosis of apple trees canopies using hyperspectral reflectance combined with PLS variable extraction and extreme learning machine [J]. Agricultural and Biological Engineering, 2021, 14(3): 181-188.
[12] Cai Yao, Miao Yuxuan, Wu Hao, et al.Hyperspectral estimation models of winter wheat chlorophyll content under elevated CO2[J]. Frontiers in Plant Science, 2021, 12: 642917.
[13] Wu Bin, Huang W, Ye H, et al. Usingmultiangular hyperspectral data to estimate the vertical distribution of leaf chlorophyll content in wheat [J]. Remote Sensing, 2021, 13(8): 1501.
[14] Wang Jianfeng, He Dongxian, Song Jinxiu, et al. Nondestructive measurement of chlorophyll in tomato leaves based on spectral transmittance international [J]. Agricultural and Biological Engineering, 2015, 8(5): 73-78.
[15] 贺冬仙, 胡娟秀. 基于叶片光谱透过特性的植物氮素测定[J]. 农业工程学报, 2011, 27(4): 214-218, 397.
He Dongxian, Hu Juanxiu. Plant nutrition indices using leaf spectral transmittance for nitrogen detection [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(4): 214-218, 397.
[16] 丁永军, 张晶晶, 孙红, 等. 玻璃温室环境下番茄叶绿素含量敏感光谱波段提取及估测模型[J]. 光谱学与光谱分析, 2017, 37(1): 194-199.〖JP2〗Ding Yongjun, Zhang Jingjing, Sun Hong, et al. Sensitive bands extraction and prediction model of tomato chlorophyll in glass greenhouse [J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 194-199.
[17] Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance [J]. International Journal of Remote Sensing, 1983, 4(2): 273-288.
[18] Jiang Changhui, Chen Yuwei, Wu Haohao, et al. Study of a high spectral resolution hyperspectral lidar in vegetation red edge parameters extraction [J]. Remote Sensing, 2019, 11(17): 2007.
[19] Ren Hongrui, Zhou Guangsheng, Zhang Xinshi. Estimation of green aboveground biomass of desert steppe in Inner Mongolia based on rededge reflectance curve area method [J]. Biosystems Engineering, 2011, 109(4): 385-395.
[20] Li Lantao, Ren Tao, Ma Yi, et al. Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral rededge parameters [J]. Computers and Electronics in Agriculture, 2016, 126: 21-31.
[21] Wen Pengfei, Shi Zujiao, Ning fang, et al. Estimation of the vertically integrated leaf nitrogen content in maize using canopy hyperspectral red edge parameters [J]. Precision Agriculture, 2021(22): 984-1005.
[22] Tao Zheng, Ning Liu, Li Wu, et al. Estimation of chlorophyll content in potato leaves based on spectral red edge position [J]. IFAC Papers OnLine, 2018, 51(17): 602-606.
[23] Lichtenthaler H K, Wellbuen A R. Determinations of total carotenoids and chlorophyll a and b leaf extracts in different solvents [J]. Biochemical Society Transactions, 1983, 11(5): 591-592.
[24] Dawson T P, Curran P J. Technical note a new technique for interpolating the reflectance red edge position [J]. International Journal of Remote Sensing, 1998, 19(11): 2133-2139.
[25] Zohre E K, Fatemeh R, Mohsen E K, et al. Investigation of the relationship between dust storm index, climatic parameters, and normalized difference vegetation index using the ridge regression method in arid regions of Central Iran [J]. Arid Land Research and Management, 2020, 34(3): 239-263.
[26] Hoerl A E, Kennard R W. Ridge regression: biased estimation for nonorthogonal problems [J]. Technometrics, 1970, 12(1): 55-67.
[27] Mcdonald G C. Ridge regression [J]. Wires Computational Statistics, 2009, 1(1): 93-100.
|