[1] 蔡桂全, 陶建平. 基于细菌觅食优化多核支持向量机的作物生长环境控制[J]. 济南大学学报(自然科学版), 2023, 37(3): 303-308.
Cai Guiquan, Tao Jianping.Crop growth environment control based on bacterial foraging optimization multikernel support vector machine [J]. Journal of University of Jinan (Science and Technology), 2023, 37(3): 303-308.
[2] 王春雷, 卢彩云, 李洪文, 等. 基于支持向量机的玉米根茬行图像分割[J]. 农业工程学报, 2021, 37(16): 117-126.
Wang Chunlei, Lu Caiyun, Li Hongwen, et al. Image segmentation of maize stubble row based on SVM [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 117-126.
[3] 孙玉婷, 杨红云, 王映龙, 等. 基于支持向量机的水稻叶面积测定[J]. 江苏农业学报, 2018, 34(5): 1027-1035.Sun Yuting, Yang Hongyun, Wang Yinglong, et al. Determination of rice leaf area based on support vector machine [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(5): 1027-1035.
[4] 汪斌斌, 杨贵军, 杨浩, 等. 基于YOLO_X和迁移学习的无人机影像玉米雄穗检测[J]. 农业工程学报, 2022, 38(15): 53-62.
Wang Binbin, Yang Guijun, Yang Hao, et al. UAV images for detecting maize tassel based on YOLO_X and transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 53-62.
[5] 顾金梅, 吴雪梅, 龙曾宇, 等. 基于BP神经网络的烟叶颜色自动分级研究[J]. 中国农机化学报, 2016, 37(4): 110-114.
Gu Jinmei, Wu Xuemei, Long Cengyu, et al. Automatic classification research on tobacco leaf color based on BP neural network[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(4): 110-114.
[6] 任浩, 李丽, 卢世博, 等. 基于深度学习的复杂自然环境下桑树枝干识别方法[J]. 中国农机化学报, 2023, 44(2): 182-188.
Ren Hao, Li Li, Lu Shibo, et al. Identification method of mulberry tree branches in complex natural environments based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 182-188.
[7] Alex K, Ilya S, Hinton G. Imagenet classification with deep convolutional neural networks[J]. Communications of the Association for Computing Machinery, 2017, 60(6): 84-90.
[8] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]. European Conference on Computer Vision, 2014.
[9] 王立扬, 张瑜, 沈群, 等. 基于改进型LeNet-5的苹果自动分级方法[J]. 中国农机化学报, 2020, 41(7): 105-110.
Wang Liyang, Zhang Yu, Shen Qun, et al. Automatic detecting and grading method of apples based on improved LeNet-5[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 105-110.
[10] 张瑞青, 李张威, 郝建军, 等. 基于迁移学习的卷积神经网络花生荚果等级图像识别[J]. 农业工程学报, 2020, 36(23): 171-180.
Zhang Ruiqing, Li Zhangwei, Hao Jianjun, et al. Image recognition of peanut pod grades based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 171-180.
[11] 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171.
Zhang Jianhua, Kong Fantao, Wu Jianzhai, et al. Cotton disease identification model based on improved VGG convolution neural network [J]. Journal of China Agricultural University, 2018, 23(11): 161-171.
[12] 王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报, 2021, 42(11): 122-129.
Wang Linbai, Zhang Bo, Yao Jingfa, et al. Potato leaf disease recognition and potato leaf disease spot detection based on convolutional neural network[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129.
[13] 陈文博, 刘昌华, 刘春苔, 等. 基于GoogLeNet的稻米品种识别与碎米检测[J]. 中国粮油学报, 2023, 38(2): 146-152.
Chen Wenbo, Liu Changhua, Liu Chuntai, et al. Identification rice varieties and broken rice based on GoogLeNet [J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(2): 146-152.
[14] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[J]. Computer Science, 2014, 34(2): 1409-1422.
[15] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015.
[16] 侯俊铭, 姚恩超, 朱红杰. 基于卷积神经网络的蓖麻种子损伤分类研究[J]. 农业机械学报, 2020, 51(S1): 440-449.
Hou Junming, Yao Enchao, Zhu Hongjie. Classification of castor seed damage based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 440-449.
[17] 苏宝峰, 沈磊, 陈山, 等. 基于注意力机制的葡萄品种多特征分类方法[J]. 农业机械学报, 2021, 52(11): 226-233, 252.
Su Baofeng, Shen Lei, Chen Shan, et al. Multifeatures identification of grape cultivars based on attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 52(11): 226-233, 252.
[18] 徐岩, 刘林, 李中远, 等. 基于卷积神经网络的玉米品种识别[J]. 江苏农业学报, 2020, 36(1): 18-23.
Xu Yan, Liu Lin, Li Zhongyuan, et al. Recognition of maize varieties based on convolutional neural network [J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 18-23.
[19] 权龙哲, 王建宇, 王旗, 等. 基于电磁振动与卷积神经网络的玉米品质精选装置[J]. 江苏大学学报(自然科学版), 2020, 41(3): 288-293, 313.
Quan Longzhe, Wang Jianyu, Wang Qi, et al. Classification method of corn quality selection based on electromagnetic vibration and convolutional neural network [J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(3): 288-293, 313.
[20] 高震宇, 王安, 刘勇, 等. 基于卷积神经网络的鲜茶叶智能分选系统研究[J]. 农业机械学报, 2017, 48(7): 53-58.
Gao Zhenyu, Wang An, Liu Yong, et al. Intelligent freshtealeaves sorting system research based on convolution neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58.
[21] 曹旨昊. 基于深度学习的图像推荐算法研究与实现[D]. 泰安: 山东农业大学, 2020.Cao Zhihao. Research and implementation of image recommendation algorithms based on deep learning [D]. Taian: Shandong Agricultural University, 2020.
[22] 张旭. 基于深度学习的苹果叶部病害识别及应用[D]. 沈阳: 沈阳农业大学, 2023.Zhang Xu. Recognition and application of apple leaf diseases based on deep learning [D]. Shenyang: Shenyang Agricultural University, 2023.
|