[1]
邓明杨. 基于云计算的食用菌环境信息自动采集仿真系统[J]. 中国食用菌, 2020, 39(2): 99-101.
Deng Mingyang. The simulation system of edible fungi environment information automatic collection based on cloud computing [J]. Edible Fungi of China, 2020, 39(2): 99-101.
[2]
曹景军. 基于深度学习的双孢菇采摘机器人视觉系统研究[D]. 北京: 中国农业科学院, 2021.
Cao Jingjun. Research on computer vision system of agaricus bisporus harvesting robot based on deep learning [D].Beijing: Chinese Academy of Agricultural Sciences, 2021.
[3]
Onishi Y, Yoshida T, Kurita H, et al. An automated fruit harvesting robot by using deep learning [J]. Robomech Journal, 2019, 6(1): 1-8.
[4]
杨萍, 郭志成. 花椒采摘机器人视觉识别与定位求解[J]. 河北农业大学学报, 2020, 43(3): 121-129.
Yang Ping, Guo Zhicheng. Vision recognition and location solution of Zanthoxylum bungeanum picking robot [J]. Journal of Hebei Agricultural University, 2020, 43(3): 121-129.
[5]
李天华, 孙萌, 娄伟, 等. 采摘机器人分割与识别算法的研究现状[J]. 山东农业科学, 2021, 53(10): 140-148.
Li Tianhua, Sun Meng, Lou Wei, et al. Research status of picking robot segmentation and recognition algorithms [J]. Shandong Agricultural Sciences, 2021, 53(10): 140-148.
[6]
钱柏英, 刘志刚. 基于视觉体验的双孢蘑菇在线自动分级设计与试验[J]. 中国食用菌, 2021, 40(2): 169-172.
Qian Baiying, Liu Zhigang. Design and experiment of online automatic grading of agaricus bisporus based on visual experience [J]. Edible Fungi of China, 2021, 40(2): 169-172.
[7]
马翠花, 张学平, 李育涛, 等. 基于显著性检测与改进Hough变换方法识别未成熟番茄[J]. 农业工程学报, 2016, 32(14): 219-226.
Ma Cuihua, Zhang Xueping, Li Yutao, et al. Identification of immature tomatoes base on salient region detection and improved Hough transform method [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 219-226.
[8]
周勇亮, 金燕, 何萍, 等. 随机Hough变换圆检测累计加速算法[J]. 计算机辅助设计与图形学学报, 2014, 26(4): 574-580.
Zhou Yongliang, Jin Yan, He Ping, et al. Accelerated randomized Hough transform for circle detection using effective accumulation strategy [J]. Journal of ComputerAided Design & Computer Graphics, 2014, 26(4): 574-580.
[9]
方圣辉, 孟樊. 利用边缘特征点聚类分析进行RHT圆形目标快速检测[J]. 武汉大学学报(信息科学版), 2010, 35(11): 1261-1264.
Fang Shenghui, Meng Fan. A rapid detection for RHT multicircle objects based on edge feature points cluster analysis [J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1261-1264.
[10]
刘子豪, 贾小军, 张素兰, 等. 一种融合MeanShift聚类分析和卷积神经网络的Vibe++背景分割方法[J]. 电信科学, 2021, 37(3): 133-145.
Liu Zihao, Jia Xiaojun, Zhang Sulan, et al. Vibe++ background segmentation method combining MeanShift clustering analysis and convolutional neural network [J]. Telecommunications Science, 2021, 37(3): 133-145.
[11]
陈建华, 王磊, 巨云涛. 基于Meanshift聚类的大规模新能源对电网线损影响评估方法[J]. 供用电, 2021, 38(2): 59-64, 76.
Chen Jianhua, Wang Lei, Ju Yuntao. Evaluation method of large scale new energy impact on power grid line loss based on Meanshift clustering [J]. Distribution & Utilization, 2021, 38(2): 59-64, 76.
[12]
Vlachopoulos O, Leblon B, Wang J, et al. Delineation of bare soil field areas from unmanned aircraft system imagery with the mean shift unsupervised clustering and the random forest supervised classification [J]. Canadian Journal of Remote Sensing, 2020, 46(4): 489-500.
[13]
程全, 刘晓青, 刘玉春, 等. 基于Mean Shift聚类的多级阈值化方法[J]. 郑州大学学报(工学版), 2017, 38(6): 64-69.
Cheng Quan, Liu Xiaoqing, Liu Yuchun, et al. Based on the Mean Shift clustering multilevel threshold method [J]. Journal of Zhengzhou University (Engineering Science), 2017, 38(6): 64-69.
[14]
邰滢滢, 吴彦海, 张利. 基于快速meanshift聚类与标记分水岭的图像分割方法[J]. 计算机应用与软件, 2015, 32(8): 184-186, 192.
Tai Yingying, Wu Yanhai, Zhang Li. Image segmentation method based on fast meanshift clustering and marking watershed [J]. Computer Applications and Software, 2015, 32(8): 184-186, 192.
|