[1] 王梓强, 胡晓光, 李晓筱, 等. 移动机器人全局路径规划算法综述[J]. 计算机科学, 2021, 48(10): 19-29.
Wang Ziqiang, Hu Xiaoguang, Li Xiaoxiao, et al. A review of global path planning algorithms for mobile robots [J]. Computer Science, 2021, 48(10): 19-29.
[2] 鲍庆勇, 李舜酩, 沈峘, 等. 自主移动机器人局部路径规划综述[J]. 传感器与微系统, 2009, 28(9): 1-4, 11.
Bao Qingyong, Li Shunming, Shen Huan, et al. A review of local path planning for autonomous mobile robots [J]. Transducer and Microsystem Technologies, 2009, 28(9): 1-4, 11.
[3] Hinton G E, Osindero S, Teh Y W. A fastlearning algorithm for deep belief nets [J]. Neural computation, 2006, 18(7): 1527-1554.
[4] Lavalle S M, Kuffner J J. Randomized kinodynamic planning [C]. IEEE International Conference on Robotics & Automation. IEEE, 2002.
[5] Khatib O. Realtime obstacle avoidance for manipulators and mobile robots [J]. International Journal of Robotics Research, 1986, 5(1): 90-98.
[6] Zlochin M, Birattari M, Meuleau N, et al. Modelbased search for combinatorial optimization: A critical survey [J]. Annals of Operations Research, 2004, 131(10): 373-395.
[7] Wang C, Soh Y C, Wang H, et al. A hierarchical genetic algorithm for path planning in a static environment with obstacles [C]. IEEE International Conference on Robotics & Automation. IEEE, 2002(3): 1652-1657.
[8] Kennedy J, Eberhart R. Particle swarm optimization [C]. ICNN95-International Conference on Neural Networks. IEEE, 2002.
[9] 张琦. 移动机器人的路径规划与定位技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
Zhang Qi. Research on path planning and localization technology of mobile robot [D]. Harbin: Harbin Institute of Technology, 2014.
[10] Koren Y, Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation [C]. IEEE International Conference on Robotics & Automation. IEEE, 2002.
[11] 王丽. 移动机器人路径规划方法研究[D]. 西安: 西北工业大学, 2007.
Wang Li. Research on path planning for mobile robot [D]. Xian: Northwestern Polytechnical University, 2007.
[12] 郭枭鹏. 基于改进人工势场法的路径规划算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Guo Xiaopeng. Research on path planning algorithm based on improved artificial potential field method [D]. Harbin: Harbin Institute of Technology, 2017.
[13] Ando Y, Yuta S. Following a wall by an autonomous mobile robot with a sonarring [C]. Proceedings of 1995 IEEE International Conference on Robotics and Automation. IEEE, 1995(3): 2599-2606.
[14] 徐梁. 轮式移动机器人路径规划研究[D]. 成都: 西南交通大学, 2018.
Xu Liang. Research on path planning of wheeled mobile robot [D]. Chengdu: Southwest Jiaotong University, 2018.
[15] 吴健. 基于Astar改进路径规划算法研究[D]. 马鞍山: 安徽工业大学, 2019.
WuJian. Research on improved path planning algorithm based on Astar [D]. Maanshan: Anhui University of Technology, 2019.
[16] 李卫硕, 孙剑, 陈伟. 基于BP神经网络机器人实时避障算法[J]. 仪器仪表学报, 2019, 40(11): 204-211.
Li Weishuo, Sun Jian, Chen Wei. Realtime obstacle avoidance algorithm for robot based on BP neural network [J]. Chinese Journal of Scientific Instrument, 2019, 40(11): 204-211.
[17] 李奕铭. 基于人工势场法的移动机器人避障研究[D]. 合肥: 合肥工业大学, 2013.
Li Yiming. Research on obstacle avoidance of mobile robot based on artificial potential field method [D]. Hefei: Hefei University of Technology, 2013.
[18] 陈田田. 基于改进人工势场法的室内移动机器人路径规划研究[D]. 郑州: 郑州大学, 2019.
Chen Tiantian. Research on indoor mobile robot path planning based on improved artificial potential field method [D]. Zhengzhou: Zhengzhou University, 2019.
[19] 程紫云. 基于人工势场法的机器人路径规划研究[D]. 秦皇岛: 燕山大学, 2016.
Cheng Ziyun. Research on robot path planning based on artificial potential field method [D]. Qinhuangdao: Yanshan University, 2016.
|