中国农机化学报 ›› 2022, Vol. 43 ›› Issue (11): 155-164.DOI: 10.13733/j.jcam.issn.2095-5553.2022.11.022
王潇1,张美娜1, 2,Zhou Jianfeng3,孙传亮2,吴茜2,曹静2
出版日期:
2022-11-15
发布日期:
2022-10-25
基金资助:
Wang Xiao, Zhang Meina, Zhou Jianfeng, Sun Chuanliang, Wu Qian, Cao Jing.
Online:
2022-11-15
Published:
2022-10-25
摘要: 农业传感器是实现农业现代化发展的关键支撑技术,先进成熟的工业传感器向农业领域拓展应用有效补充了农业传感器的体量。LiDAR传感器由于其较强的抗干扰能力,在复杂多变的农业场景中应用越来越广泛、深入。首先,介绍LiDAR传感器的性能特点,工作原理与分类,市场应用与新技术;然后,基于国内外大量相关研究,系统介绍LiDAR传感器及技术在森林参数测量、果树靶标几何特征探测、作物几何表型特征检测、农业车辆自主导航定位以及农药雾滴飘移检测这5个农业场景的应用进展;同时,针对农业场景中探测对象的特殊性,讨论分析LiDAR传感器及技术在上述5类农业场景应用中的发展趋势;最后,展望LiDAR新技术在农业场景应用中的发展方向,即通过集成自动化采集系统装备与数据智能分析方法进一步提升LiDAR数据精准性、全面性、丰富性和实时性。
中图分类号:
王潇, 张美娜, Zhou Jianfeng, 孙传亮, 吴茜, 曹静. LiDAR传感器及技术在农业场景的应用进展综述[J]. 中国农机化学报, 2022, 43(11): 155-164.
Wang Xiao, Zhang Meina, Zhou Jianfeng, Sun Chuanliang, Wu Qian, Cao Jing.. A review on the application of LiDAR sensors and technologies in agricultural scenarios[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 155-164.
[1] Ratnaparkhi S, Khan S, Arya C, et al. Smart agriculture sensors in IOT: A review [J]. Materials Today: Proceedings, 2020. [2] Lin N, Wang X, Zhang Y, et al. Fertigation management for sustainable precision agriculture based on Internet of Things [J]. Journal of Cleaner Production, 2020, 277: 124119. [3] Cisternas I, Velásquez I, Caro A, et al. Systematic literature review of implementations of precision agriculture [J]. Computers and Electronics in Agriculture, 2020, 176: 105626. [4] Lin Y. LiDAR: An important tool for nextgeneration phenotyping technology of high potential for plant phenomics? [J]. Computers and electronics in Agriculture, 2015, 119: 61-73. [5] Karthikeyan L, Chawla I, Mishra A K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses [J]. Journal of Hydrology, 2020, 586: 124905. [6] 赵一鸣, 李艳华, 商雅楠, 等. 激光雷达的应用及发展趋势[J]. 遥测遥控, 2014, 35(5): 4-22. Zhao Yiming, Li Yanhua, Shang Yanan, et al. Application and development direction of Lidar [J]. Journal of Telemetry, Tracking and Command, 2014, 35(5): 4-22. [7] 杨兴雨, 苏金善, 王元庆, 等. 国内外激光成像雷达系统发展的研究[J]. 激光杂志, 2016, 37(1): 1-4. Yang Xingyu, Su Jinshan, Wang Yuanqing, et al. Research the development of international laser imaging radar system [J]. Laser Journal, 2016, 37(1): 1-4. [8] Hu Y, Zhao N, Qian Q. Modeling and analyzing point cloud generation in missileborne LiDAR [J]. Defence Technology, 2020, 16(1): 69-76. [9] Zhao Y, Wang X, Cai Y, et al. Measurements of atmospheric aerosol hygroscopic growth based on multichannel RamanMie lidar [J]. Atmospheric Environment, 2021, 246: 118076. [10] Pentek Q, Kennel P, Allouis T, et al. A flexible targetless LiDARGNSS/INScamera calibration method for UAV platforms [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 294-307. [11] Cui Y, Wu J, Xu H, et al. Lane change identification and prediction with roadside LiDAR data [J]. Optics & Laser Technology, 2020, 123: 105934. [12] 王俊. 基于自动驾驶的激光雷达测距技术研究[D]. 成都: 电子科技大学, 2020. Wang Jun. Research on Lidar ranging technology based on autopilot [D]. Chengdu: University of Electronic Science and Technology of China, 2020. [13] 周睿, 孔东. 一种高精度相位激光测距方法的实现[J]. 科学技术与工程, 2009, 9(21): 6337-6342, 6347. Zhou Rui, Kong Dong. Realization on a method of accurate phaseshift laser range finder [J]. Science Technology and Engineering, 2009, 9(21): 6337-6342, 6347. [14] 杨兴雨, 李晨, 郝丽婷, 等. 先进激光三维成像雷达技术的研究进展与趋势分析[J]. 激光杂志, 2019, 40(5): 1-9. Yang Xingyu, Li Chen, Hao Liting, et al. Research progress and trend analysis of advanced 3D imaging Lidar technology [J]. Laser Journal, 2019, 40(5): 1-9. [15] Li Z P, Ye J T, Huang X, et al. Singlephoton imaging over 200 km [J]. Optica, 2021, 8(3): 344-349. [16] 王滨辉, 宋沙磊, 曹雄, 等. 多光谱激光雷达波形数据处理及应用[J]. 红外与激光工程, 2020, 49(S2): 96-102. Wang Binhui, Song Shalei, Cao Xiong, et al. Processing and application of multispectral Lidar waveform data [J]. Infrared and Laser Engineering, 2020, 49(S2): 96-102. [17] 龚威, 史硕, 陈必武, 等. 对地观测高光谱激光雷达发展及展望[J]. 遥感学报, 2021, 25(1): 501-513. Gong Wei, Shi Shuo, Chen Biwu, et al. Development and prospect of hyperspectral LiDAR for earth observation [J]. National Remote Sensing Bulletin, 2021, 25(1): 501-513. [18] Olivier M D, Robert S. A method to quantify canopy changes using multitemporal terrestrial Lidar data: Tree response to surrounding gaps [J]. Agricultural and Forest Meteorology, 2017, 237: 184-195. [19] Coops N C, Tompalski P, Goodbody T R H, et al. Modelling lidarderived estimates of forest attributes over space and time: A review of approaches and future trends [J]. Remote Sensing of Environment, 2021, 260: 112477. [20] García M, Riao D, Chuvieco E, et al. Estimating biomass carbon stocks for a mediterranean forest in central Spain using LiDAR height and intensity data [J]. Remote Sensing of Environment, 2010, 114(4): 816-830. [21] Anderson C T, Dietz S L, Pokswinski S M, et al. Traditional field metrics and terrestrial LiDAR predict plant richness in southern pine forests [J]. Forest Ecology and Management, 2021, 491: 119118. [22] Sun C, Cao S, SanchezAzofeifa G A. Mapping tropical dry forest age using airborne waveform LiDAR and hyperspectral metrics [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83: 101908. [23] Mahoney C, Hall R J, Hopkinson C, et al. A forest attribute mapping framework: A pilot study in a Northern boreal forest, Northwest Territories, Canada [J]. Remote sensing, 2018, 10(9): 1338. [24] Simonson W D, Allen H D, Coomes D A. Remotely sensed indicators of forest conservation status: Case study from a Natura 2000 site in southern Portugal [J]. Ecological indicators, 2013, 24: 636-647. [25] Ferraz A, Saatchi S, Mallet C, et al. Lidar detection of individual tree size in tropical forests [J]. Remote Sensing of Environment, 2016, 183: 318-333. [26] 庞勇, 赵峰, 李增元, 等. 机载激光雷达平均树高提取研究[J]. 遥感学报, 2008, 12(1): 152-158. Pang Yong, Zhao Feng, Li Zengyuan, et al. Forest height inversion using airborne Lidar technology [J]. Journal of Remote Sensing, 2008, 12(1): 152-158. [27] 张海锋, 许林云. 果园喷雾机发展现状及展望[J]. 中国农机化学报, 2014, 35(3): 112-118. Zhang Haimeng, Xu Linyun. Summary of research status on orchard sprayer [J]. Journal of Chinese Agricultural Mechanization,2014, 35(3): 112-118. [28] Rosell J R, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities [J]. Computers and electronics in agriculture, 2012, 81: 124-141. [29] 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3): 59-72. Qiu Baijing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72. [30] Arnó J, Vallès J M, Llorens J, et al. Leaf area index estimation in vineyards using a groundbased LiDAR scanner [J]. Precision agriculture, 2013, 14(3): 290-306. [31] Mahmud M S, Zahid A, He L, et al. Development of a LiDAR-guided sectionbased tree canopy density measurement system for precision spray applications [J]. Computers and Electronics in Agriculture, 2021, 182: 106053. [32] Zeng L, Feng J, He L. Semantic segmentation of sparse 3D point cloud based on geometrical features for trellisstructured apple orchard [J]. Biosystems Engineering, 2020, 196: 46-55. [33] 张美娜, 吕晓兰, 邱威, 等. 基于三维激光点云的靶标叶面积密度计算方法[J]. 农业机械学报, 2017, 48 (11): 172-178. Zhang Meina, Lü Xiaolan, Qiu Wei, et al. Calculation method of leaf area density based on threedimensional laser point cloud [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 172-178. [34] 苏伟, 展珺鸽, 张明政, 等. 基于机载LiDAR数据的农作物叶面积指数估算方法研究[J]. 农业机械学报, 2016, 47(3): 272-277. Su Wei, Zhan Junge, Zhang Mingzheng, et al. Estimation method of crop leaf area index based on airborne LiDAR data [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 272-277. [35] 程曼, 袁洪波, 蔡振江, 等. 田间作物高通量表型信息获取与分析技术研究进展[J]. 农业机械学报, 2020, 51(S1): 314-324. Cheng Man, Yuan Hongbo, Cao Zhenjiang, et al. Review of fieldbased information acquisition and analysis of highthroughput phenotyping [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 314-324. [36] Greaves H E, Vierling L A, Eitel J U H, et al. Estimating aboveground biomass and leaf area of lowstature Arctic shrubs with terrestrial LiDAR [J]. Remote Sensing of Environment, 2015, 164: 26-35. [37] Saeys W, Lenaerts B, Craessaerts G, et al. Estimation of the crop density of small grains using LiDAR sensors [J]. Biosystems Engineering, 2009, 102(1): 22-30. [38] JimenezBerni J A, Deery D M, RozasLarraondo P, et al. High throughput determination of plant height, ground cover, and aboveground biomass in wheat with LiDAR [J]. Frontiers in Plant Science, 2018, 9: 1-18. [39] 程曼, 蔡振江, Ning Wang, 等. 基于地面激光雷达的田间花生冠层高度测量系统研制[J]. 农业工程学报, 2019, 35(1): 180-187. Cheng Man, Cai Zhenjiang, Ning Wang,et al. System design for peanut canopy height information acquisition based on LiDAR [J]. Transactions of the CSAE, 2019, 35(1): 180-187. [40] Wang H, Lin Y, Wang Z, et al. Validation of a lowcost 2D laser scanner in development of a moreaffordable mobile terrestrial proximal sensing system for 3D plant structure phenotyping in indoor environment [J]. Computers and Electronics in Agriculture, 2017, 140: 180-189. [41] 郭庆华, 吴芳芳, 庞树鑫, 等. Crop 3D—基于激光雷达技术的作物高通量三维表型测量平台[J]. 中国科学:生命科学, 2016, 46(10): 1210-1221. Guo Qinghua, Wu Fangfang, Pang Shuxin, et al. Crop 3D: A platform based on LiDAR for 3D highthroughput crop phenotyping [J]. Science China Press, 2016, 46(10): 1210-1221. [42] Lin Y C, Habib A. Quality control and crop characterization framework for multitemporal UAV LiDAR data over mechanized agricultural fields [J]. Remote Sensing of Environment, 2021, 256: 112299. [43] 王庆, 车荧璞, 柴宏红, 等. 基于无人机可见光与激光雷达的甜菜株高定量评估[J]. 农业机械学报, 2021, 52(3): 178-184. Wang Qing, Che Yingpu, Chai Honghong, et al. Quantitative evaluation of sugar beet plant height based on UAV-RGB and UAV-LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3):178-184. [44] Blok P M, van Boheemen K, van Evert F K, et al. Robot navigation in orchards with localization based on Particle filter and Kalman filter [J]. Computers and Electronics in Agriculture, 2019, 157: 261-269. [45] 张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18. Zhang Man, Ji Yuhan, Li Shichao, et al. Research progress of agricultural machinery navigation technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 1-18. [46] Underwood J P, Jagbrant G, Nieto J I, et al. Lidarbased tree recognition and platform localization in orchards [J]. Journal of Field Robotics, 2015, 32(8): 1056-1074. [47] 李秋洁, 丁旭东, 邓贤. 基于激光雷达的果园行间路径提取与导航[J]. 农业机械学报, 2020, 51(S2): 344-350. Li Qiujie, Ding Xudong, Deng Xian. Intrarow path extraction and navigation for orchards based on LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 344- 350. [48] 刘伟洪, 何雄奎, 刘亚佳, 等. 果园行间3D LiDAR导航方法[J]. 农业工程学报, 2021, 37(9): 165-174. Liu Weihong, He Xiongkui, Liu Yajia, et al. Navigation method between rows for orchard based on 3D LiDAR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 165-174. [49] 刘星星, 张超, 张浩, 等. 最小二乘法与SVM组合的林果行间自主导航方法[J]. 农业工程学报, 2021, 37(9): 157-164. Liu Xingxing, Zhang Chao, Zhang Hao, et al. Interrow automatic navigation method by combining least square and SVM in forestry [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 157-164. [50] 侯加林, 蒲文洋, 李天华, 等. 双激光雷达温室运输机器人导航系统研制[J]. 农业工程学报, 2020, 36(14): 80-88. Hou Jialin, Pu Wenyang, Li Tianhua, et al. Development of duallidar navigation system for greenhouse transportation robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 80-88. [51] 季宇寒, 李寒, 张漫, 等. 基于激光雷达的巡检机器人导航系统研究[J]. 农业机械学报, 2017, 49(2):14-21. Ji Yuhan, Li Han, Zhang Man, et al. Navigation system for inspection robot based on LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 49(2): 14-21. [52] Berg F V D, Kubiak K, Benjey W G. Emission of pesticides into the air [J]. Water Air & Soil Pollution, 1999(115): 195-218. [53] Gregorio E, RosellPolo J R, Sanz R, et al. LIDAR as an alternative to passive collectors to measure pesticide spray drift [J]. Atmospheric environment, 2014, 82: 83-93. [54] 张慧春, 郑加强, 周宏平, 等. 农药喷施过程中雾滴沉积分布与脱靶飘移研究[J]. 农业机械学报, 2017, 48(8): 114-122. Zhang Huichun, Zheng Jiaqiang, Zhou Hongping, et al. Droplet deposition distribution and offtarget drift during pesticide spraying operation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 114-122. [55] 王国宾, 李烜, John Andaloro, 等. 田间农药雾滴精准采样技术与发展趋势[J]. 农业工程学报, 2021, 37(11): 1-12. Wang Guobin, Li Xuan, John Andaloro, et al. Current status and prospects of precise sampling of pesticide droplets [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 1-12. [56] Hoff R M, Mickle R E, Froude F A. A rapid acquisition lidar system for aerial spray diagnostics [J]. Transactions of the ASAE, 1989, 32(5): 1523-1528. [57] Gregorio E, Rocadenbosch F, Sanz R, et al. Eyesafe lidar system for pesticide spray drift measurement [J]. Sensors, 2015, 15(2): 3650-3670. [58] Gregorio E, Torrent X, Planas de Martí S, et al. Measurement of spray drift with a specifically designed lidar system [J]. Sensors, 2016, 16(4): 499. [59] Gregorio E, Torrent X, Planas S, et al. Assessment of spray drift potential reduction for hollowcone nozzles: Part 2. LiDAR technique [J]. Science of the Total Environment, 2019, 687: 967-977. [60] Torrent X, Gregorio E, RosellPolo J R, et al. Determination of spray drift and buffer zones in 3D crops using the ISO standard and new LiDAR methodologies [J]. Science of the Total Environment, 2020, 714: 136666. [61] Gil E, Llorens J, Llop J, et al. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying [J]. Sensors, 2013, 13(1): 516-534. |
[1] | 姜来, 王文娣, 霍晓静, 王辉, 唐娟, 李丽华, (. 死鸡识别机器人系统设计与试验[J]. 中国农机化学报, 2023, 44(8): 81-87. |
[2] | 高昂, 卢传兵, 任龙龙, 李玲, 沈向, 宋月鹏, . 基于改进YOLOX-s的苹果花生长状态检测方法及验证分析[J]. 中国农机化学报, 2023, 44(8): 162-167. |
[3] | 高芳征, 汤文俊, 陈光明, 黄家才. 基于改进YOLOv3的复杂环境下西红柿成熟果实快速识别[J]. 中国农机化学报, 2023, 44(8): 174-183. |
[4] | 李航, 廖映华, 黄波. 基于改进DQN算法的茶叶采摘机械手路径规划[J]. 中国农机化学报, 2023, 44(8): 198-205. |
[5] | 邵毅帆, 梅松, 石志刚, 宋志禹, 童一飞. 基于改进人工势场法的农用机器人路径规划技术研究[J]. 中国农机化学报, 2023, 44(8): 206-213. |
[6] | 郎秀丹, 史宇亮, 黄新平, 李天华, 王东伟, 陈明东. 日光温室藤蔓类作物整体落蔓装置设计[J]. 中国农机化学报, 2023, 44(7): 78-84. |
[7] | 阮承治, 林根深, 陈旭, 孙月平, 杨君, 赵德安. 基于图像处理的蟹塘水草图像导航线拟合方法[J]. 中国农机化学报, 2023, 44(7): 147-153. |
[8] | 刘雯雯, 孙裕晶, 姜树辉, 姜鹏. 遮挡情况下的行人检测方法研究[J]. 中国农机化学报, 2023, 44(7): 179-186. |
[9] | 李宗南, 蒋怡, 王思, 李源洪, 黄平, 魏鹏. 基于YOLOv5模型的飞蓬属入侵植物目标检测[J]. 中国农机化学报, 2023, 44(7): 200-206. |
[10] | 杨欣, 刘耀熙, 魏津瑜, 张晓林. 区块链嵌入的天津农产品供应链治理模式研究[J]. 中国农机化学报, 2023, 44(6): 224-229. |
[11] | 王鹏, 金诚谦, , 王超, 李盼盼, 赵紫皓. 谷物联合收获机脱粒系统研究现状[J]. 中国农机化学报, 2023, 44(5): 48-57. |
[12] | 周显沁, 韩震宇, 刘成源. 基于改进卷积神经网络与图像处理的蚕茧识别方法[J]. 中国农机化学报, 2023, 44(5): 100-106. |
[13] | 孙奉辰, 蔡红珍, 祁志强, 高锋, 刘玉凤, 刘德营. 基于液气射流的负压蒸汽加热系统设计与试验[J]. 中国农机化学报, 2023, 44(4): 104-112. |
[14] | 王海琛, 吴华瑞, 朱华吉, 缪祎晟, 杨宝祝, . 基于改进蚁群算法的蔬菜大田无人农机路径优化[J]. 中国农机化学报, 2023, 44(4): 187-194. |
[15] | 刘臻, 孙源, 焦帅峰, 程元儡, 陈云坪. 基于半球摄影法的LAI自动组网测量系统设计与应用[J]. 中国农机化学报, 2023, 44(3): 123-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296