[1]
Chen J D, Chen J X, Zhang D F, et al. Using deep transfer learning for imagebased plant disease identification[J]. Computers and Electronics in Agriculture, 2020, 173(2): 1-11.
[2]
谢从华. 马铃薯产业的现状与发展[J]. 华中农业大学学报(社会科学版), 2012(1): 1-5.
Xie Conghua. Potato industry: Status and development [J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2012(1): 1-5.
[3]
Militante S V, Gerardo B D, Dionisio N V. Plant leaf detection and disease recognition using deep learning [C]. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE). IEEE, 2019.
[4]
Ferentinos K P. Deep learning models for plant disease detection and diagnosis [J]. Computers and Electronics in Agriculture, 2018, 145: 311-318.
[5]
Saleem M H, Potgieter J, Arif K M. Plant disease detection and classification by deep learning [J]. Plants, 2019, 8(11): 468.
[6]
Atila U, Ucar M, Akuol K, et al. Plant leaf disease classification using EfficientNet deep learning model [J]. Ecological Informatics, 2021, 61: 1-21.
[7]
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[8]
Abdallah Ali. PlantVillage dataset [EB/OL]. https://www.kaggle.com/abdallahalidev/plantvillagedataset, 2019-09-06.
[9]
Darrenl. labelImg is a graphical image annotation tool and label object bounding boxes in images [EB/OL]. https://github.com/tzutalin/labelImg, 2017-04-03.
[10]
周晓彦, 王珂, 李凌燕. 基于深度学习的目标检测算法综述[J]. 电子测量技术, 2017, 40(11): 89-93.
Zhou Xiaoyan, Wang Ke, Li Lingyan. Review of object detection based on deep learning [J]. Electronic Measurement Technique, 2017, 40(11): 89-93.
[11]
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network [J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
[12]
张汇, 杜煜, 宁淑荣, 等. 基于Faster RCNN的行人检测方法[J]. 传感器与微系统, 2019, 38(2): 147-149, 153.
Zhang Hui, Du Yu, Ning Shurong, et al. Pedestrian detection method based on Faster RCNN [J]. Sensors and Microsystems, 2019, 38(2): 147-149, 153.
[13]
Xu Z, Shi H, Li N, et al. Vehicle detection under UAV based on optimal dense YOLO method [C]. 2018 5th International Conference on Systems and Informatics (ICSAI), 2018.
[14]
罗浩伦, 冯泽霖, 冉钟南, 等. 基于VGG16网络的茶叶嫩芽自动检测研究[J]. 农业与技术, 2020, 40(1): 15-17.
[15]
刘春池, 潘卫国. 基于Faster RCNN的行人检测[C]. 中国计算机用户协会网络应用分会. 2020年第二十四届网络新技术与应用年会论文集[A]. 北京: 北京联合大学北京市信息服务工程重点实验室, 2020: 251-255.
[16]
林刚, 王波, 彭辉, 等. 基于改进FasterRCNN的输电线巡检图像多目标检测及定位[J]. 电力自动化设备, 2019, 39(5): 213-218.
Lin Gang, Wang Bo,Peng Hui, et al. Multitarget detection and location of transmission line inspection image based on improved FasterRCNN [J]. Electric Power Automation Equipment, 2019, 39(5): 213-218.
[17]
Xu D, Wu Y. Improved YOLO-V3 with DenseNet for multiscale remote sensing target detection [J]. Sensors, 2020, 20(15): 4276.
[18]
Nalldrin, Krasin I, PontTuset J, et al. The open images dataset [EB/OL]. https://github.com/openimages/dataset, 2016-11-03.
[19]
李小占, 马本学, 喻国威, 等. 基于深度学习与图像处理的哈密瓜表面缺陷检测[J]. 农业工程学报, 2021, 37(1): 223-232.
Li Xiaozhan, Ma Benxue, Yu Guowei, et al. Surface defect detection of Hami melon using deep learning and image processing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 223-232.
[20]
侯加林, 房立发, 吴彦强, 等. 基于深度学习的生姜种芽快速识别及其朝向判定[J]. 农业工程学报, 2021, 37(1): 213-222.
Hou Jialin, Fang Lifa, Wu Yanqiang, et al. Rapid recognition and orientation determination of ginger shoots with deep learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 213-222.
[21]
Xie Y, Cai J, Bhojwani R, et al. A locallyconstrained YOLO framework for detecting small and denselydistributed building footprints [J]. International Journal of Geographical Information Science, 2019, 34(4): 1-25.
[22]
Wu D, Lv S, Jiang M, et al. Using channel pruningbased YOLO v4 deep learning algorithm for the realtime and accurate detection of apple flowers in natural environments [J]. Computers and Electronics in Agriculture, 2020, 178: 1-12.
[23]
Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[24]
Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. Computer Vision and Pattern Recognition, 2018, 3(8): 22-27.
[25]
Bochkovskiy A, Wang C Y, Liao H. YOLOv4: Optimal speed and accuracy of object detection [J]. Computer Vision and Pattern Recognition, 2020(1): 1-16.
|