[1]
徐可, 李怀民, 曹卫星, 等. 基于RGB-D多源图像融合的农田麦草识别方法研究[C]. 第十九届中国作物学会学术年会, 2020.
[2]
袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334.
Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition based on image processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334.
[3]
温德圣, 许燕, 周建平, 等. 自然光照影响下基于深度卷积神经网络和颜色迁移的杂草识别方法[J]. 中国科技论文, 2020, 15(3): 287-292.
Wen Desheng, Xu Yan, Zhou Jianping, et al. Weed identification method based on deep convolutional neural network and color migration under the influence of natural illumination [J]. China Sciencepaper, 2020, 15(3): 287-292.
[4]
孙俊, 何小飞, 谭文军, 等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165.
Sun Jun, He Xiaofei, Tan Wenjun, et al. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 159-165.
[5]
樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Identification and localization of weeds based on optimized Faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[6]
Fu Lifang, Lü Xingchen, Wu Qiufeng, et al. Field weed recognition based on an improved VGG with inception module [J]. International Journal of Agricultural and Environmental Information Systems, 2020, 11(2): 1-13.
[7]
Elghany S A, Mai R I, Alruwaili M, et al. Diagnosis of various skin cancer lesions based on finetuned ResNet50 deep network [J]. Computers Materials and Continua, 2021, 68(1): 117-135.
[8]
Rasmussen C B, Kirk K, Moeslund T B. Anchor tuning in Faster R-CNN for measuring corn silage physical characteristics [J]. Computers and Electronics in Agriculture, 2021, 188: 106344.
[9]
Dong Ruchan, Xu Dazhuan, Zhao Jin, et al. SigNMS-based Faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8534-8545.
[10]
张学军, 黄爽, 靳伟, 等. 基于改进Faster R-CNN的农田残膜识别方法[J]. 湖南大学学报(自然科学版), 2021, 48(8): 161-168.
Zhang Xuejun, Huang Shuang, Jin Wei, et al. Identification method of agricultural film residue based on improved Faster R-CNN [J]. Journal of Hunan University (Natural Sciences), 2021, 48(8): 161-168.
[11]
Fang Fen, Li Liyuan, Zhu Hongyuan, et al. Combining Faster R-CNN and modeldriven clustering for elongated object detection [J]. IEEE Transactions on Image Processing, 2020, 29(1): 2052-2065.
[12]
Gong Hua, Li Hui, Xu Ke, et al. Object detection based on improved YOLOv3-tiny [C]. In Proceedings of the 2019 Chinese Automation Congress, 2019: 3240-3245.
[13]
Quan Longzhe, Wu Bing, Mao Shouren. An instance segmentationbased method to obtain the leaf age and plant centre of weeds in complex field environments [J]. Sensors, 2021, 21(10).
[14]
Farooq A, Hu Jiankun, Jia Xiuping. Analysis of spectral bands and spatial resolutions for weed classification via deep convolutional neural network [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 183-187.
|