[1] 郑钊. 基于物联网技术的智慧农业发展模式研究[J]. 农业经济, 2022(2): 13-15.
[2] 赵继春, 孙素芬, 郭建鑫, 等. 基于无线传感器网络的设施农业环境智能监测系统设计[J]. 中国农机化学报, 2020, 41(4): 146-151.
Zhao Jichun, Sun Sufen, Guo Jianxin, et al. Design of intelligent monitoring system for facility agriculture environment based on wireless sensor network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 146-151.
[3] 贾敬敦, 鲁相洁, 黄峰, 等. 远程控制与无线通信技术在农业中的应用分析与展望[J]. 农业机械学报, 2021, 52(S1): 351-359.
Jia Jingdun, Lu Xiangjie, Huang Feng, et al. Review of remote control and wireless communication technology in agriculture applications [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 351-359.
[4] 邹彬, 董军堂, 杨延宁, 等. 基于云平台的温室大棚管理系统[J]. 传感器与微系统, 2021, 40(12): 112-114, 118.
Zou Bin, Dong Juntang, Yang Yanning, et al. Greenhouse management system based on cloud platform [J]. Transducer and Microsystem Technologies, 2021, 40(12): 112-114, 118.
[5] 张宝峰, 陈枭, 朱均超, 等. 基于物联网的水肥一体化系统设计与试验[J]. 中国农机化学报, 2021, 42(3): 98-104.
Zhang Baofeng, Chen Xiao, Zhu Junchao, et al. Design and experiment of integrated water and fertilizer system based on Internet of Things [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 98-104.
[6] Chamarajnagar R, Ashok A. Integrity threat identification for distributed IoT in precision agriculture [C]. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, 2019: 1-9.
[7] Commault C, Dion J M, Trinh D H, et al. Sensor classification for the fault detection and isolation, a structural approach [J]. International Journal of Adaptive Control and Signal Processing, 2011, 25(1): 1-17.
[8] 王纪章, 贺通, 周金生, 等. 基于时空信息比较的温室环境传感器故障识别[J]. 农业机械学报, 2018, 49(2): 319-326.
Wang Jizhang, He Tong, Zhou Jinsheng, et al. Sensor fault identification in greenhouse environment based on comparison of spatialtemporal information [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 319-326.
[9] Yi T H, Huang H B, Li H N. Development of sensor validation methodologies for structural health monitoring: A comprehensive review [J]. Measurement, 2017, 109: 200-214.
[10] Ni K, Ramanathan N, Chehade M N H, et al. Sensor network data fault types [J]. ACM Transactions on Sensor Networks (TOSN), 2009, 5(3): 1-29.
[11] 张娅玲, 陈伟民,章鹏, 等. 传感器故障诊断技术概述[J]. 传感器与微系统, 2009, 28(1): 4-6, 12.
Zhang Yaling, Chen Weimin, Zhang Peng, et al. Overview on sensor fault diagnosis technology [J]. Transducer and Microsystem Technologies, 2009, 28(1): 4-6, 12.
[12] Li D, Wang Y, Wang J, et al. Recent advances in sensor fault diagnosis: A review [J]. Sensors and Actuators A: Physical, 2020, 309: 111990.
[13] Raychaudhuri S, Stuart J M, Altman R B. Principal components analysis to summarize microarray experiments: Application to sporulation time series [M]. Biocomputing 2000, 1999: 455-466.
[14] 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736-749.
Gu Bingbin, Xiong Weili. Fault diagnosis based on PCA method with multiblock information extraction [J]. CIESC Journal, 2019, 70(2): 736-749.
[15] 李立力, 刘纲, 张亮亮, 等. 加权PCA残差子空间的加速度传感器故障诊断[J]. 振动·测试与诊断, 2021, 41(5): 1007-1013, 1039-1040.
Li Lili, Liu Gang, Zhang Liangliang, et al. Accelerometer fault diagnosis with weighted PCA residual space [J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(5): 1007-1013, 1039-1040.
[16] Huang H B, Yi T H, Li H N. Bayesian combination of weighted principalcomponent analysis for diagnosing sensor faults in structural monitoring systems [J]. Journal of Engineering Mechanics, 2017, 143(9): 04017088.
[17] Wang S, Xiao F. AHU sensor fault diagnosis using principal component analysis method [J]. Energy and Buildings, 2004, 36(2): 147-160.
[18] Chen H, Jiang B, Lu N, et al. Deep PCA based realtime incipient fault detection and diagnosis methodology for electrical drive in highspeed trains [J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4819-4830.
[19] Li W, Peng M, Liu Y, et al. Fault detection, identification and reconstruction of sensors in nuclear power plant with optimized PCA method [J]. Annals of Nuclear Energy, 2018, 113: 105-117.
[20] 苑进, 胡敏, Kesheng Wang, 等. 基于高斯过程建模的物联网数据不确定性度量与预测[J]. 农业机械学报, 2015, 46(5): 265-272.
Yuan Jin, Hu Min, Kesheng Wang, et al. Uncertainty measurement and prediction of IoT data based on Gaussian process modeling [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 265-272.
[21] Li S, Wen J. A modelbased fault detection and diagnostic methodology based on PCA method and wavelet transform [J]. Energy and Buildings, 2014, 68: 63-71.
[22] 李伟. 核电厂传感器状态监测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
Li Wei. Research on the techniques of sensor condition monitoring for a nuclear power plant [D]. Harbin: Harbin Engineering University, 2018.
[23] MacGregor J F, Kourti T. Statistical process control of multivariate processes [J]. Control Engineering Practice, 1995, 3(3): 403-414.
[24] Zhu T, Huang J, Yan X. Process monitoring based on entropy weight for a subspace containing probabilistic principal components and faultrelevant noise factors [J]. Journal of Chemometrics, 2017, 31(6): e2890.
[25] Zhang C, Gao X, Xu T, et al. Fault detection and diagnosis strategy based on a weighted and combined index in the residual subspace associated with PCA [J]. Journal of Chemometrics, 2018, 32(11): e2981.
|