Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (12): 151-161.DOI: 10.13733/j.jcam.issn.2095-5553.2023.12.023
Previous Articles Next Articles
Huo Ruzhou1, Xi Xiaobo1, 2, Zhang Yifu1, Zhang Baofeng1, Qu Jiwei1, Zhang Ruihong1, 2
Online:
2023-12-15
Published:
2024-01-16
霍如周1,奚小波1, 2,张翼夫1,张宝峰1,瞿济伟1,张瑞宏1, 2
基金资助:
CLC Number:
Huo Ruzhou, Xi Xiaobo, , Zhang Yifu, Zhang Baofeng, Qu Jiwei, Zhang Ruihong, . Current situation and development trend of Chinas agricultural carbon emissions under the background of carbon neutrality[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(12): 151-161.
霍如周, 奚小波, , 张翼夫, 张宝峰, 瞿济伟, 张瑞宏, . 碳中和背景下中国农业碳排放现状与发展趋势[J]. 中国农机化学报, 2023, 44(12): 151-161.
[1] 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269-273. Dong Hongmin, Li Yue, Tao Xiuping, et al, China greenhouse gas emissions from agricultural activities and its mitigation strategy [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273. [2] 周天军, 陈晓龙. 《巴黎协定》温控目标下未来碳排放空间的准确估算问题辨析[J]. 中国科学院院刊, 2022, 37(2): 216-229. Zhou Tianjun, Chen Xiaolong. Perspective on challenges in accurately estimating remaining carbon budget for climate targets of Paris Agreement [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(2): 216-229. [3] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(003). [4] 习近平. 继往开来,开启全球应对气候变化新征程——在气候雄心峰会上的讲话[J]. 中华人民共和国国务院公报, 2020(35): 7.Xi Jinping. Building on past achievements and launching a new journey for global climate actions—Statement at the climate ambition summit [J]. Gazette of the State Council of the Peoples Republic of China, 2020(35): 7. [5] Liu M, Yang L. Spatial pattern of Chinas agricultural carbon emission performance [J]. Ecological Indicators, 2021, 133: 108345. [6] Frank S, Havlík P, Stehfest E, et al. Agricultural nonCO2 emission reduction potential in the context of the 15 C target [J]. Nature Climate Change, 2019, 9(1): 66-72. [7] Guan D, Hubacek K, Weber C L, et al. The drivers of Chinese CO2 emissions from 1980 to 2030 [J]. Global Environmental Change, 2008, 18(4): 626-634. [8] 高鸣, 张哲晰. 碳达峰、碳中和目标下我国农业绿色发展的定位和政策建议[J]. 华中农业大学学报(社会科学版), 2022(1): 24-31. Gao Ming, Zhang Zhexi. Positioning and policy suggestions of Chinas agricultural green development under the targets of carbon peaking and carbon neutrality [J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2022(1): 24-31 [9] 何艳秋, 陈柔, 吴昊玥, 等. 中国农业碳排放空间格局及影响因素动态研究[J]. 中国生态农业学报, 2018, 26(9): 1269-1282. He Yanqiu, Chen Rou, Wu Haoyue, et al. Spatial dynamics of agricultural carbon emissions in China and the related driving factors [J]. Chinese Journal of EcoAgriculture, 2018, 26(9): 1269-1282. [10] 李秋萍, 李长建, 肖小勇, 等. 中国农业碳排放的空间效应研究[J]. 干旱区资源与环境, 2015, 29(4): 30-35. Li Qiuping, Li Changjian, Xiao Xiaoyong, et al. The spatial effects of agricultural carbon emissions in China—Based on spatial Durbin model [J]. Journal of Arid Land Resources and Environment, 2015, 29(4): 30-35. [11] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口资源与环境, 2012, 22(7): 21-27. Min Jisheng, Hu Hao. Calculation of greenhouse gases emission from agricultural production in China [J]. China Population, Resources and Environment, 2012, 22(7): 21-27. [12] 谭秋成. 中国农业温室气体排放: 现状及挑战[J]. 中国人口资源与环境, 2011, 21(10): 69-75. Tan Qiucheng. Greenhouse gas emission in Chinas agriculture: Situation and challenge [J]. China Population, Resources and Environment, 2011, 21(10): 69-75. [13] 张广胜, 王珊珊. 中国农业碳排放的结构、效率及其决定机制[J]. 农业经济问题, 2014, 35(7): 18-26, 110. Zhang Guangsheng, Wang Shanshan. Chinas agricultural carbon emission: Structure, efficiency and its determinants [J]. Issues in Agricultural Economy, 2014, 35(7): 18-26, 110. [14] 田云, 张俊飚, 李波. 湖北省农地利用碳排放时空特征与脱钩弹性研究[J]. 长江流域资源与环境, 2012, 21(12): 1514-1519. Tian Yun, Zhang Junbiao, Li Bo. Research on spatialtemporal characteristics and decoupling elasticity in agricultural land use carbon emission in Hubei province [J]. Resources and Environment in the Yangtze Basin, 2012, 21(12): 1514-1519. [15] Lal R. Carbon management in agricultural soils [J]. Mitigation and Adaptation Strategies for Global Change, 2007, 12: 303-322. [16] Huang X, Feng C, Qin J, et al. Measuring Chinas agricultural green total factor productivity and its drivers during 1998—2019 [J]. Science of the Total Environment, 2022, 829: 154477. [17] Esteve P, VarelaOrtega C, BlancoGutiérrez I, et al. A hydroeconomic model for the assessment of climate change impacts and adaptation in irrigated agriculture [J]. Ecological Economics, 2015, 120: 49-58. [18] Tendall D M, Gaillard G. Environmental consequences of adaptation to climate change in Swiss agriculture: An analysis at farm level [J]. Agricultural Systems, 2015, 132: 40-51. [19] Xu B, Lin B. Factors affecting CO2 emissions in Chinas agriculture sector: Evidence from geographically weighted regression model [J]. Energy Policy, 2017, 104: 404-414. [20] 林斌, 徐孟, 汪笑溪. 中国农业碳减排政策、研究现状及展望[J]. 中国生态农业学报(中英文), 2022, 30(4): 500-515. Lin Bin,Xu Meng, Wang Xiaoxi. Mitigation of greenhouse gas emissions in Chinas agricultural sector: Current status and future perspectives [J]. Chinese Journal of EcoAgriculture, 2022, 30(4): 500-515. [21] 侯博, 应瑞瑶. 分散农户低碳生产行为决策研究——基于TPB和SEM的实证分析[J]. 农业技术经济, 2015(2): 4-13. [22] 李红梅, 傅新红, 吴秀敏. 农户安全施用农药的意愿及其影响因素研究——对四川省广汉市214户农户的调查与分析[J]. 农业技术经济, 2007(5): 99-104. [23] 王建华, 马玉婷, 王晓莉. 农产品安全生产: 农户农药施用知识与技能培训[J]. 中国人口·资源与环境, 2014, 24(4): 54-63. Wang Jianhua, Ma Yuting, Wang Xiaoli. Agricultural production safety: Farmers pesticide application knowledge and technical training [J]. China Population, Resources and Environment, 2014, 24(4): 54-63. [24] Clarke C L, Shackleton S E, Powell M. Climate change perceptions, drought responses and views on carbon farming amongst commercial livestock and game farmers in the semiarid Great Fish River Valley, Eastern Cape province, South Africa [J]. African Journal of Range & Forage Science, 2012, 29(1): 13-23. [25] 蔡荣, 汪紫钰, 钱龙, 等. 加入合作社促进了家庭农场选择环境友好型生产方式吗?——以化肥、农药减量施用为例[J]. 中国农村观察, 2019(1): 51-65. Cai Rong, Wang Ziyu, Qian Long, et al. Do cooperatives promote family farms to choose environmentalfriendly production practices? An empirical analysis of fertilizers and pesticides reduction [J]. China Rural Survey, 2019(1): 51-65. [26] 刘明明, 雷锦锋. 我国农业实现碳中和的法制保障研究[J]. 广西社会科学, 2021(9): 30-38. [27] 罗小锋, 杜三峡, 黄炎忠, 等. 种植规模、市场规制与稻农生物农药施用行为[J]. 农业技术经济, 2020(6): 71-80. Luo Xiaofeng, Du Sanxia, Huang Yanzhong, et al. Planting scale,market regulation and rice farmers biological pesticide application behavior [J]. Journal of Agrotechnical Economics, 2020(6): 71-80. [28] 吴雪莲, 张俊飚, 何可, 等. 农户水稻秸秆还田技术采纳意愿及其驱动路径分析[J]. 资源科学, 2016, 38(11): 2117-2126. Wu Xuelian, Zhang Junbiao, He Ke, et al. Farmer willingness to adopt rice straw returning technology and driving path [J]. Resources Science, 2016, 38(11): 2117-2126. [29] Jiang L, Zhang J, Wang H H, et al. The impact of psychological factors on farmers intentions to reuse agricultural biomass waste for carbon emission abatement [J]. Journal of Cleaner Production, 2018, 189: 797-804. [30] Piao S, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China [J]. Nature, 2010, 467(7311): 43-51. [31] Deng A, Chen C, Feng J, et al. Crop** system innovation for CO** with climatic warming in China [J]. The Crop Journal, 2017, 5(2): 136-150. [32] 姜涛, 刘瑞, 边卫军. “十四五”时期中国农业碳排放调控的运作困境与战略突围[J]. 宁夏社会科学, 2021(5): 66-73. [33] 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104-127. Tian Yun, Yin Minhao. Reevaluation of Chinas agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects [J]. Chinese Rural Economy, 2022(3): 104-127. [34] Yun T, Zhang J, He Y. Research on spatialtemporal characteristics and driving factor of agricultural carbon emissions in China [J]. Journal of Integrative Agriculture, 2014, 13(6): 1393-1403. [35] 田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097-2105. Tian Yun, Zhang Junbiao, Li Bo. Agricultural carbon emissions in China: Calculation, spatialtemporal comparison and decoupling effects [J]. Resources Science, 2012, 34(11): 2097-2105. [36] Xiong C, Wang G, Xu L. Spatial differentiation identification of influencing factors of agricultural carbon productivity at city level in Taihu lake basin, China [J]. Science of the Total Environment, 2021, 800: 149610. [37] 陈罗烨, 薛领, 雪燕. 中国农业净碳汇空间集聚与分异[J]. 生态环境学报, 2015, 24(11): 1777-1784. Chen Luoye, Xue Ling, Xue Yan. Spatial agglomeration and variation of Chinas agricultural net carbon sink [J]. Ecology and Environmental Sciences, 2015, 24(11): 1777-1784. [38] 陈儒, 邓悦, 姜志德. 基于修正碳计量的区域农业碳补偿时空格局[J]. 经济地理, 2018, 38(6): 168-177. Chen Ru, Deng Yue, Jiang Zhide. Spatial and temporal pattern of regional agricultural carbon compensation based on the modified carbon measurement [J]. Economic Geography, 2018, 38(6): 168-177. [39] 卢子芳, 邓文敏. 朱卫未. 江苏省生态环境治理绩效动态评价研究——基于PCA-SBM模型和TFP指数[J]. 华东经济管理, 2019, 33(9): 32-38. Lu Zifang, Deng Wenmin, Zhu Weiwei. Dynamic evaluation of ecological environment governance performance of Jiangsu Province—Based on PCA-SBM and TFP Index [J]. East China Economic Management, 2019, 33(9): 32-38. [40] 王惠, 卞艺杰. 农业生产效率、农业碳排放的动态演进与门槛特征[J]. 农业技术经济, 2015(6): 36-47. [41] Liu D, Zhu X, Wang Y. Chinas agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors [J]. Journal of Cleaner Production, 2021, 278: 123692. [42] Liu Y, Gao Y. Measurement and impactor analysis of agricultural carbon emission performance in Changjiang economic corridor [J]. Alexandria Engineering Journal, 2022, 61(1): 873-881. [43] 黄奇帆. 伟大复兴的关键阶段——学习《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》的认识和体会[J]. 人民论坛, 2021(15): 6-10. [44] 马红坤, 曹原, 毛世平. 欧盟共同农业政策的绿色转型轨迹及其对我国政策改革的镜鉴[J]. 农村经济, 2019(3): 135-144. [45] 展进涛, 徐钰娇, 葛继红. 考虑碳排放成本的中国农业绿色生产率变化[J]. 资源科学, 2019, 41(5): 884-896. Zhang Jintao, Xu Yujiao, Ge Jihong. Change in agricultural green productivity in China considering the cost of carbon emissions [J]. Resources Science, 2019, 41(5): 884-896. [46] 史俊晖, 戴小文. 我国省域农业隐含碳排放及其驱动因素时空动态分析[J]. 中国农业资源与区划, 2020, 41(8): 169-180. Shi Junhui, Dai Xiaowen. Spatial dynamics of agricultural embodied carbon emissions in provinces of China and the related driving factors [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(8): 169-180. [47] Dumortier J, Elobeid A. Effects of a carbon tax in the United States on agricultural markets and carbon emissions from landuse change [J]. Land use policy, 2021, 103: 105320. [48] 本刊讯. 国家发展改革委负责人就《国家应对气候变化规划(2014—2020年)》答记者问[J]. 中国经贸导刊, 2014(28): 59-60. [49] Liu B, Shi J, Wang H, et al. Driving factors of carbon emissions in China: A joint decomposition approach based on metafrontier [J]. Applied Energy, 2019, 256: 113986. [50] Li M, Liu S, Sun Y, et al. Agriculture and animal husbandry increased carbon footprint on the QinghaiTibet Plateau during past three decades [J]. Journal of Cleaner Production, 2021, 278: 123963. [51] Xu Y, Zhang L, Yeh C H, et al. Evaluating WEEE recycling innovation strategies with interacting sustainabilityrelated criteria [J]. Journal of Cleaner Production, 2018, 190: 618-629. [52] Chen Z, Xu C, Ji L, et al. Effects of multicrop** system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China [J]. Global Ecology and Conservation, 2020, 22: e00895. [53] Liu W, Zhang G, Wang X, et al. Carbon footprint of main crop production in China: Magnitude, spatialtemporal pattern and attribution [J]. Science of the Total Environment, 2018, 645: 1296-1308. [54] Yu Y, Ji H, Zhao C. Evaluation of the effects of plastic mulching and nitrapyrin on nitrous oxide emissions and economic parameters in an arid agricultural field [J]. Geoderma, 2018, 324: 98-108. [55] Zhao M, Jiang C, Li X, et al. Variations in nitrous oxide emissions as manipulated by plastic film mulching and fertilization over three successive years in a hot pepperradish rotated vegetable production system [J]. Agriculture, Ecosystems & Environment, 2020, 304: 107127. [56] Wan N, Ji X, Jiang J, et al. A methodological approach to assess the combined reduction of chemical pesticides and chemical fertilizers for lowcarbon agriculture [J]. Ecological Indicators, 2013, 24: 344-352. [57] Li W, Ou Q, Chen Y. Decomposition of Chinas CO2 emissions from agriculture utilizing an improved Kaya identity [J]. Environmental Science and Pollution Research, 2014, 21: 13000-13006. [58] RobainaAlves M, Moutinho V. Decomposition of energyrelated GHG emissions in agriculture over 1995—2008 for European countries [J]. Applied Energy, 2014, 114: 949-957. [59] 金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型:中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29-37. Jin Shuqin, Lin Yu, Niu Kunyu. Driving green transformation of agriculture with low carbon: Characteristics of agricultural carbon emissions and its emission reduction path in China [J]. Reform, 2021(5): 29-37. [60] Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved [J]. Environmental Microbiology Reports, 2009, 1(5): 285-292. [61] 陈松文, 刘天奇, 曹凑贵, 等. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3): 3-12. Chen Songwen, Liu Tianqi, Cao Cougui, et al. Situation of carbon neutrality in rice production and techniques for lowcarbon rice farming [J]. Journal of Huazhong Agricultural University, 2021, 40(3): 3-12. [62] 唐志伟, 张俊, 邓艾兴, 等. 我国稻田甲烷排放的时空特征与减排途径[J]. 中国生态农业学报(中英文), 2022, 30(4): 582-591. Tang Zhiwei, Zhang Jun, Deng Aixing, et al. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China [J]. Chinese Journal of EcoAgriculture, 2022, 30(4): 582-591. [63] 刘杰云, 邱虎森, 张文正, 等. 节水灌溉对农田土壤温室气体排放的影响[J]. 灌溉排水学报, 2019, 38(6): 1-7. Liu Jieyun, Qiu Husen, Zhang Wenzheng, et al. Response of greenhouse gas emissions to watersaving irrigation in croplands: A review [J]. Journal of Irrigation and Drainage, 2019, 38(6): 1-7. [64] Liechty Z, SantosMedellín C, Edwards J, et al. Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters [J]. Msystems, 2020, 5(1): e00897-19. [65] Riya S, Zhou S, Watanabe Y, et al. CH4 and N2O emissions from different varieties of forage rice (Oryza sativa L.) treating liquid cattle waste [J]. Science of the Total Environment, 2012, 419: 178-186. [66] Aulakh M S, Wassmann R, Bueno C, et al. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars [J]. Plant Biology, 2001, 3(2): 139-148. [67] Chen Y, Li S, Zhang Y, et al. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields [J]. Soil Biology and Biochemistry, 2019, 129: 191-200. [68] Jiang Y, van Groenigen K J, Huang S, et al. Higher yields and lower methane emissions with new rice cultivars [J]. Global Change Biology, 2017, 23(11): 4728-4738. [69] Zhang Y, Jiang Y, Tai A P K, et al. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China [J]. Environmental Research Letters, 2019, 14(11): 114020. [70] Yu X Q, Liu G L, Li M S, et al. Breeding and utilization of watersaving and droughtresistant cytoplasmic male sterile line Huhan 7A [J]. Acta Agriculturae Shanghai, 2016, 32(5): 175-178. [71] Wang J, Zhang X, Xiong Z, et al. Methane emissions from a rice agroecosystem in South China: effects of water regime, straw incorporation and nitrogen fertilizer [J]. Nutrient Cycling in Agroecosystems, 2012, 93: 103-112. [72] Li C, Salas W, DeAngelo B, et al. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years [J]. Journal of Environmental Quality, 2006, 35(4): 1554-1565. [73] Chen H, Yu C, Li C, et al. Modeling the impacts of water and fertilizer management on the ecosystem service of rice rotated crop** systems in China [J]. Agriculture, Ecosystems & Environment, 2016, 219: 49-57. [74] Yan X, Cai Z, Wang S, et al. Direct measurement of soil organic carbon content change in the croplands of China [J]. Global Change Biology, 2011, 17(3): 1487-1496. [75] Zheng C, Jiang Y, Chen C, et al. The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and crop** regions [J]. The Crop Journal, 2014, 2(5): 289-296. [76] 曹惠明, 孟祥亮, 孔梅, 等. 基于VIIRS数据的山东省秸秆焚烧时空变化研究[J]. 环境科学与技术, 2022(5): 1-14. Cao Huiming, Meng Xiangliang, Kong Mei, et al. Spatiotemporal variation of straw burning in Shandong Province based on VIIRS data [J]. Environmental Science & Technology, 2022(5): 1-14. [77] Huang L, Zhu Y, Wang Q, et al. Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts [J]. Science of the Total Environment, 2021, 789: 147935. [78] 库永丽, 徐国益, 赵骅, 等. 微生物肥料对猕猴桃高龄果园土壤改良和果实品质的影响[J]. 应用生态学报, 2018, 29(8): 2532-2540. Ku Yongli, Xu Guoyi, Zhao Hua, et al. Effects of microbial fertilizer on soil improvement and fruit quality of kiwifruit in old orchard [J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2532-2540. [79] Zheng W, Luo B. Understanding pollution behavior among farmers: Exploring the influence of social networks and political identity on reducing straw burning in China [J]. Energy Research & Social Science, 2022, 90: 102553. [80] Zhou M, Zhu B, Wang S, et al. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global metaanalysis [J]. Global Change Biology, 2017, 23(10): 4068-4083. [81] 苏旭峰, 杨小东, 冉启英. 基于碳排放视角的中国畜牧业绿色增长分析[J]. 生态经济, 2022, 38(4): 101-107. Su Xufeng, Yang Xiaodong, Ran Qiying. Analysis on the green growth of animal husbandry in China from the perspective of carbon emissions [J]. Ecological Economy, 2022, 38(4): 101-107. [82] 郭险峰, 艾静静. 农业碳排放的时空演变、影响因素及脱钩效应研究——基于31省2000—2019年面板数据[J]. 西昌学院学报(自然科学版), 2022, 36(1): 9-15, 22. Guo Xianfeng, Ai Jingjing. Temporal and spatial variation, influencing factors and decoupling effect of agricultural carbon emissions: based on panel data of 31 provinces from 2000 to 2019 [J]. Journal of Xichang University (Natural Science Edition), 2022, 36(1): 9-15, 22. [83] Nayak D, Saetnan E, Cheng K, et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture [J]. Agriculture, Ecosystems & Environment, 2015, 209: 108-124. [84] 雷鸣, 程于真, 苗娜, 等. 黄土及其他添加物对猪粪贮存过程氨气和温室气体排放的影响[J]. 环境科学学报, 2019, 39(12): 4132-4139. Lei Ming, Cheng Yuzhen, Miao Na, et al. Effects of mixing loess and other additives with pig manure on ammonia and greenhouse gas emissions during storage [J]. Acta Scientiae Circumstantiae, 2019, 39(12): 4132-4139. [85] 崔利利, 王效琴, 梁东丽, 等. 不同堆高奶牛粪便长期堆积过程中温室气体和氨排放特点[J]. 农业环境科学学报, 2018, 37(2): 376-382. Cui Lili, Wang Xiaoqin, Liang Dongli, et al. Greenhouse gas and ammonia emissions from different piling heights in longterm stacks of dairy manure [J]. Journal of AgroEnvironment Science, 2018, 37(2): 376-382. [86] 李成龙, 周宏. 农业技术进步与碳排放强度关系——不同影响路径下的实证分析[J]. 中国农业大学学报, 2020, 25(11): 162-171. Li Chenglong, Zhou Hong. Relationship between agricultural technology progress and carbon emission intensity: An empirical analysis under different influence paths [J]. Journal of China Agricultural University, 2020, 25(11): 162-171. [87] Fischer G, Winiwarter W, Ermolieva T, et al. Integrated modeling framework for assessment and mitigation of nitrogen pollution from agriculture: Concept and case study for China [J]. Agriculture, Ecosystems & Environment, 2010, 136(1-2): 116-124. [88] Koondhar M A, Tan Z, Alam G M, et al. Bioenergy consumption, carbon emissions, and agricultural bioeconomic growth: A systematic approach to carbon neutrality in China [J]. Journal of Environmental Management, 2021, 296: 113242. [89] Qiao H, Zheng F, Jiang H, et al. The greenhouse effect of the agricultureeconomic growthrenewable energy nexus: Evidence from G20 countries [J]. Science of the Total Environment, 2019, 671: 722-731. [90] De Rudder K. Tier 4 high efficiency SCR for agricultural applications [J]. SAE International Journal of Commercial Vehicles, 2012, 5(2012-01-1087): 386-394. [91] Mattetti M, Beltramin A, Estevez M A P, et al. Start and stop systems on agricultural tractors as solution for saving fuel and emissions [J]. Biosystems Engineering, 2022, 216: 108-120. [92] Liu M, Liu W, Yang L, et al. A dynamic ecocompensation standard for hani rice terraces system in Southwest China [J]. Ecosystem Services, 2019, 36: 100897. [93] Cui Y, Khan S U, Deng Y, et al. Environmental improvement value of agricultural carbon reduction and its spatiotemporal dynamic evolution: Evidence from China [J]. Science of the Total Environment, 2021, 754: 142170. [94] Liu X, Zhang S, Bae J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries [J]. Journal of Cleaner Production, 2017, 164: 1239-1247. [95] She W, Wu Y, Huang H, et al. Integrative analysis of carbon structure and carbon sink function for major crop production in Chinas typical agriculture regions [J]. Journal of Cleaner Production, 2017, 162: 702-708. [96] Zhang Y, Jiang Y, Li Z, et al. Aboveground morphological traits do not predict rice variety effects on CH4 emissions [J]. Agriculture, Ecosystems & Environment, 2015, 208: 86-93. [97] Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304(5677): 1623-1627. [98] Abbas F, Hammad H M, Ishaq W, et al. A review of soil carbon dynamics resulting from agricultural practices [J]. Journal of Environmental Management, 2020, 268: 110319. [99] Ledgard S F, Wei S, Wang X, et al. Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations [J]. Agricultural Water Management, 2019, 213: 155-163. [100] 朱志平, 董红敏, 魏莎, 等. 中国畜禽粪便管理变化对温室气体排放的影响[J]. 农业环境科学学报, 2020, 39(4): 743-748. Zhu Zhiping, Dong Hongmin, Wei Sha, et al. Impact of changes in livestock manure management on greenhouse gas emissions in China [J]. Journal of AgroEnvironment Science, 2020, 39(4): 743-748. [101] 王一杰, 管大海, 王全辉, 等. 气候智慧型农业在我国的实践探索[J]. 中国农业资源与区划, 2018, 39(10): 43-50. Wang Yijie, Guan Dahai, Wang Quanhui, et al. The practical exploration of climate smart agriculture in China [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(10): 43-50. |
[1] | Zhang Meng. Practice and thinking of postcertificate supervision of agricultural machinery [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 208-214. |
[2] | Zhu Sizhu, Zhang Meng, Sun Hongwu. Study on the construction of evaluation index system of county agricultural science and technology modernization [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 233-239. |
[3] | . [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(3): 205-210. |
[4] | . [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 160-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296