Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (1): 116-123.DOI: 10.13733/j.jcam.issn.2095-5553.2023.01.017
Previous Articles Next Articles
Mao Xiaojuan, Bao Tong, Xun Guanglian, Li Decui, Wang Baojia, Ren Ni#br#
Online:
2023-01-15
Published:
2023-01-18
毛晓娟,鲍彤,荀广连,李德翠,王宝佳,任妮
基金资助:
CLC Number:
Mao Xiaojuan, Bao Tong, Xun Guanglian, Li Decui, Wang Baojia, Ren Ni. Prediction of temperature in the greenhouse of vegetable growing based on GWO-LSTM[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 116-123.
毛晓娟, 鲍彤, 荀广连, 李德翠, 王宝佳, 任妮. 基于GWO-LSTM的设施蔬菜温室温度预测[J]. 中国农机化学报, 2023, 44(1): 116-123.
[1] Taki M, Ajabshirchi Y, Ranjbar S F, et al. Heat transfer and MLP neural network models to predict inside environment variables and energy lost in a semisolar greenhouse [J]. Energy and Buildings, 2016, 110: 314-329. [2] Wang D, Wang M, Qiao X. Support vector machines regression and modeling of greenhouse environment [J]. Computers and Electronics in Agriculture, 2009, 66(1): 46-52. [3] 周伟, 李永博, 汪小旵. 基于CFD非稳态模型的温室温度预测控制[J]. 农业机械学报, 2014, 45(12): 335-340. Zhou Wei, Li Yongbo, Wang Xiaochan. Model predictive control of air temperature in greenhouse based on CFD unsteady model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 335-340. [4] Saberian A, Sajadiye S M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation [J]. Renewable Energy, 2019, 138: 722-737. [5] 左志宇, 毛罕平, 张晓东, 等. 基于时序分析法的温室温度预测模型[J]. 农业机械学报, 2010, 41(11): 173-177. Zuo Zhiyu, Mao Hanping, Zhang Xiaodong, et al. Forecast model of greenhouse temperature based on time series method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 173-177. [6] 邹伟东, 张百海, 姚分喜, 等. 基于改进型极限学习机的日光温室温湿度预测与验证[J]. 农业工程学报, 2015, 31(24): 194-200. Zou Weidong, Zhang Baihai, Yao Fenxi, et al. Verification and forecasting of temperature and humidity in solar greenhouse based on improved extreme learning machine algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 194-200. [7] 邹秋滢, 纪建伟, 李征明. 基于ANFIS的温室小气候环境因子预测模型辨识[J]. 沈阳农业大学学报, 2014, 45 (4): 503-507. Zou Qiuying, Ji Jianwei, Li Zhengming. Identification of greenhouse microclimate environmental factors prediction model based on ANFIS [J]. Journal of Shenyang Agricultural University, 2014, 45(4): 503-507. [8] 徐宇, 冀荣华. 基于复数神经网络的智能温室温度预测研究[J]. 中国农机化学报, 2019, 40(4): 174-178. Xu Yu, Ji Ronghua. Research on temperature prediction of intelligent greenhouse based on complex neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 174-178. [9] 陈昕, 唐湘璐, 李想, 等. 二次聚类与神经网络结合的日光温室温度二步预测方法[J]. 农业机械学报, 2017, 48(S1): 353-358. Chen Xin, Tang Xianglu, Li Xiang, et al. Twosteps prediction method of temperature in solar greenhouse based on twice cluster analysis and neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 353-358. [10] Yu H, Chen Y, Hassan S G, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO [J]. Computers and Electronics in Agriculture, 2016, 122: 94-102. [11] 任守纲, 刘鑫, 顾兴健, 等. 基于R-BP神经网络的温室小气候多部滚动预测模型[J]. 中国农业气象, 2018, 39(5): 314-324. Ren Shougang, Liu Xin, Gu Xingjian, et al. MultiStep rolling prediction model of greenhouse microclimate based on R-BP Neural Network [J]. Chinese Journal of Agrometeorology, 2018, 39(5): 314-324. [12] 田东, 韦鑫化, 王悦, 等. 基于MA-ARIMA-GASVR的食用菌温室温度预测[J]. 农业工程学报, 2020, 36(3): 190-197. Tian Dong, Wei Xinhua, Wang Yue, et al. Prediction of temperature in edible fungi greenhouse based on MA-ARIMA-GASVR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 190-197. [13] Jordan M I. Serial order: A parallel distributed processing approach [J]. ICS-Report 8604 Institute for Cognitive Science University of California, 1986, 121: 64. [14] Hochreiter S, Schmidhuber J. Long shortterm memory [J]. Neural Computation, 1997, 9(8): 1735-1780. [15] 宋刚, 张云峰, 包芳勋, 等. 基于粒子群优化LSTM的股票预测模型[J]. 北京航空航天大学学报, 2019, 45(12): 2533-2542. Song Gang, Zhang Yunfeng, Bao Fangxun, et a1. Stock prediction model based on particle swarm optimization LSTM [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2533-2542. [16] 陈英义, 程倩倩, 方晓敏, 等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J]. 农业工程学报, 2018, 34(17): 183-191. Chen Yingyi, Cheng Qianqian, Fang Xiaoming, et a1. Principal component analysis and long shortterm memory neural network for predicting dissolved oxygen in water for aquaculture [J]. Transactions of the CSAE, 2018, 34(17): 183-191. [17] 李泽龙, 杨春节, 刘文辉, 等. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997. Li Zelong, Yang Chunjie, Liu Wenhui, et al. Research on hot metal Sicontent prediction based on LSTM-RNN [J]. CIESC Journal, 2018, 69(3): 992-997. [18] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. Wang Xin, Wu Ji, Liu Chao, et al. Exploring LSTM based recurrent neural network for failures time series prediction [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784. [19] 白盛楠, 申晓留. 基于LSTM循环神经网络的PM2.5预测[J]. 计算机应用与软件, 2019, 36(1): 67-70, 104. Bai Shengnan, Shen Xiaoliu. PM2.5 prediction based on LSTM recurrent neural network [J]. Computer Application and Software, 2019, 36(1): 67-70, 104. [20] Huan J, Li H, Li M, et al. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long shortterm memory network: A study of Chang Zhou fishery demonstration base, China [J]. Computers and Electronics in Agriculture, 2020, 175: 105530. [21] Chen P, Xiao Q, Zhang J, et al. Occurrence prediction of cotton pests and diseases by bidirectional long shortterm memory networks with climate and atmosphere circulation [J]. Computers and Electronics in Agriculture, 2020, 176: 105612. [22] Rui F, Zuo Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction [C].2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2016. [23] Dhja B, Hsk A, Cj A, et al. Timeserial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse [J]. Computers and Electronics in Agriculture, 2020, 173: 105402. [24] 赵明珠, 王丹, 方杰, 等. 基于LSTM神经网络的地铁车站温度预测[J]. 北京交通大学学报, 2020, 44(4): 94-101. Zhao Mingzhu, Wang Dan, Fang Jie, et al. Prediction of subway station temperature based on LSTM neural network [J]. Journal of Beijing Jiaotong University, 2020, 44(4): 94-101. [25] 智协飞, 王田, 季焱. 基于深度学习的中国地面气温的多模式集成预报研究[J]. 大气科学学报, 2020, 43(3): 435-446. Zhi Xiefei, Wang Tian, Ji Yan. Multimodel ensemble forecasts of surface air temperature over China based on deep learning approach [J]. Transactions of Atmospheric Sciences, 2020, 43(3): 435-446. [26] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer [J]. Advances in engineering software, 2014, 69: 46-61. [27] 廖康, 吴益平, 李麟玮, 等. 基于时间序列与GWO-ELM模型的滑坡位移预测[J]. 中南大学学报(自然科学版), 2019, 50(3): 619-626. Liao Kang, Wu Yiping, Li Linwei, et al. Displacement prediction model of landslide based on time series and GWO-ELM [J]. Journal of Central South University (Science and Technology), 2019, 50(3): 619-626. [28] 黄文聪, 张宇, 杨远程, 等. 模糊信息粒化和GWO-SVM算法结合的短期风速范围预测[J]. 华侨大学学报(自然科学版), 2020, 41(5): 674-682. Huang Wencong, Zhang Yu, Yang Yuancheng, et al. Shortterm wind speed range prediction based on fuzzy information granulation and GWO-SVM algorithm [J]. Journal of Huaqiao University (Natural Science), 2020, 41(5): 674-682. |
[1] | Wang Zhibin, Fu Yang, Qiao Xiaojun, Wei Yana, , He Yulun. Application of ozone sterilizer devices for controlling vegetable diseases during seeding stages in greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 55-62. |
[2] | Zhang Li, Liu Jingrui, Li Zhen, Li Chuanyou, Teng Fei, Zhao Jingwen. Study on the quality of different spraying methods for strawberries in greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 63-68. |
[3] | Lang Xiudan, Shi Yuliang, Huang Xinping, Li Tianhua, Wang Dongwei, Chen Mingdong. Design of integral vinefalling device for solar greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 78-84. |
[4] | Sun Xincheng, Zhang Zhongwu, Jiang Wan, Kang Jie, Yang Lianyong, Chen Weiping. Daily variation simulation and early warning model of temperature and humidity in unequal height greenhouse in Dongting Lake area [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 170-178. |
[5] | Sun Fengchen, Cai Hongzhen, , Qi Zhiqiang, Gao Feng, Liu Yufeng, Liu Deying. Design and experiment of negative pressure steam heating system based on liquidair jet [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 104-112. |
[6] | Li Jidong, Wang Qianghui.. Temperature prediction algorithm for poultry house based on optimized feature subset selection and improved SVR [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 91-98. |
[7] | Dong Xiaoxing, Du Nanshan, Guo Zhixin, Zhang Tao, Piao Fengzhi.. Standardized design of arch structure of steel frame plastic greenhouse in Henan Province [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 47-54. |
[8] | Dai Zhiwei, Cheng Man, Yuan Hongbo, Cai Zhenjiang.. Review of irrigation control strategy for greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 63-72. |
[9] | Bian Dongchao, Yang Fazhan, Zhao Guodong, Zheng Kairui, Lin Haibo.. Construction of intelligent water and fertilizer integration system for blueberry greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 55-61. |
[10] | Zhu Feiyu, Liu Muhua, Yuan Haichao, Zhao Jinhui, Yu Haojun. . Design of soil temperature and moisture monitoring system for vegetable field based on the Internet of Things [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 190-198. |
[11] | Li Guoli, Zhou Chuang, Mou Fuyuan.. Design of remote monitoring and control system for agricultural greenhouse environment based on ESP32 [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 47-52. |
[12] | Jiang Saike, Zhang Meina, Li Xue, Qi Yannan, Lü Xiaolan.. Development of navigation and control technology for autonomous mobile equipment in greenhouses [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 159-169. |
[13] | Li Rui, Li Ning, Li Yulong, Song Xingyi, Kou Xiaoxi, Wang Shaojin.. A new heating block control system based on PID regulations for continuously changed heating rates [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 84-92. |
[14] | Yu Yuting, Xu Guangli, Liu Pingzeng, Wang Xiuli, Zhang Yan, Wang Shen. Study on time parameters of opening and closing vents in tomato greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 83-90. |
[15] | Zhang Meijuan, Chen Zihan, Wang Zhong, Chen Shengmin. Experimental study on flow characteristics of methanol injector of agricultural single cylinder diesel engine [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 99-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296