[1] Sadoughi M, Hu Chao. Physicsbased convolutional neural network for fault diagnosis of rolling element bearings [J]. IEEE Sensors Journal, 2019, 19(11): 4181-4192.
[2] Choudhary A, Mian T, Fatima S. Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images [J]. Measurement, 2021, 176: 109196.
[3] Iunusova E, Gonzalez M K, Szipka K, et al. Early fault diagnosis in rolling element bearings: Comparative analysis of a knowledgebased and a datadriven approach [J]. Journal of Intelligent Manufacturing, 2023, 4(2): 1-21.
[4] 张志宇, 章翔峰, 姜宏. 基于MCKDNMD的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2023, 592(6): 93-96, 101.
Zhang Zhiyu, Zhang Xiangfeng, Jiang Hong. Research on fault diagnosis method of rolling bearing based on MCKDNMD [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023, 592(6): 93-96, 101.
[5] 李梦男, 李琨, 吴聪. 基于IWAE的不平衡数据集下轴承故障诊断研究[J]. 机械强度, 2023, 45(3): 569-575.
Li Mengnan, Li Kun, Wu Cong. Research on bearing fault diagnosis under unbalanced data set based on IWAE [J]. Journal of Mechanical Strength, 2023, 45(3): 569-575.
[6] Jun Zhu, Nan Chen, Changqing, et al. A new deep transfer learning method for bearing fault diagnosis under different working conditions [J]. IEEE Sensors Journal, 2019, 20(15): 8394-8402.
[7] 刘振华, 吴磊, 张康生. 基于多尺度特征交叉融合注意力的滚动轴承故障诊断方法[J/OL].轴承: 1-8[2024-05-11]. http://kns.cnki.net/kcms/detail/41.1148.th.20230526.1718.002.html.
[8] 赵小强, 郭海科. 多特征融合的滚动轴承故障诊断[J]. 农业工程学报, 2023, 39(13): 80-88.
Zhao Xiaoqiang, Guo Haike. Fault diagnosis of rolling bearing using multifeature fusion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(13): 80-88.
[9] 徐硕, 邓艾东, 杨宏强, 等. 基于改进残差网络的旋转机械故障诊断 [J]. 太阳能学报, 2023, 44(7): 409-418.
Xu Shuo, Deng Aidong, Yang Hongqiang, et al. Rotating machinery fault diagnosis method based on improved residual networks [J]. ACTA Energiae Solaris Sinica, 2023, 44(7): 409-418.
[10] 苏树智, 张茂岩, 方贤进, 等. 基于全局—局部欧拉弹性判别投影的旋转机械故障诊断方法[J]. 振动与冲击, 2023, 42(11): 65-74.〖JP2〗Su Shuzhi, Zhang Maoyan, Fang Xianjin, et al. Fault diagnosis method of rotating machinery based on globallocal Euler elastic discriminant projection [J].〖JP〗 Journal of Vibration and Shock, 2023, 42(11): 65-74.
[11] Bian Jun, Jing Laixing, Liu Yanqiu. Application and optimization of entropy in diagnosis for agricultural machinery bearing fault [C]. International Conference on AgriPhotonics and Smart Agricultural Sensing Technologies (ICASAST 2022). SPIE, 2022, 12349: 112-119.
[12] Liu Wenkai, Zhang Zhigang, Zhang Jiarui, et al. A novel fault diagnosis method of rolling bearings combining convolutional neural network and transformer [J]. Electronics, 2023, 12(8): 1838.
[13] 王誉翔, 钟智伟, 夏鹏程, 等. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
Wang Yuxiang, Zhong Zhiwei, Xia Pengcheng, et al. Compound fault decoupling diagnosis method based on improved Transformer [J]. Journal of Zhejiang University (Engineering Science), 2023, 57(5):855-864.
[14] Wang Yuxiang, Zhong Zhiwei, Xia Pengcheng, et al. Compound fault decoupling diagnosis method based on improved transformer [J]. Journal of Zhejiang University (Engineering Science), 2023, 57(5):855-864.
[15] Jin Guoqiang, Zhu Tianyi, Akram M W, et al. An adaptive antinoise neural network for bearing fault diagnosis under noise and varying load conditions [J]. IEEE Access, 2020, 8: 74793-74807.
|