[1] 张瑞红, 赵凯旋, 姬江涛, 等. 基于机器学习的奶牛颈环ID自动定位与识别方法[J]. 南京农业大学学报, 2021, 44(3): 586-595.
Zhang Ruihong, Zhao Kaixuan, Ji Jiangtao, et al. Automatic location and recognition of cows collar ID based on machine learning [J]. Journal of Nanjing Agricultural University, 2021, 44(3): 586-595.
[2] 王佳盛, 陈燕, 曾泽钦, 等. 基于全卷积神经网络的荔枝表皮缺陷提取[J]. 华南农业大学学报, 2018, 39(6): 104-110.
Wang Jiasheng, Chen Yan, Zeng Zeqin, et al. Extraction of litchi fruit pericarp defect based on a fully convolutional neural network [J]. Journal of South China Agricultural University, 2018, 39(6): 104-110.
[3] 赵腾飞, 胡国玉, 周建平, 等. 卷积神经网络算法在核桃仁分类中的研究[J]. 中国农机化学报, 2022, 43(6): 181-189.
Zhao Tengfei, Hu Guoyu, Zhou Jianping, et al. Research on convolutional neural network algorithm for walnut kenel classification identification [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 181-189.
[4] 陆健强, 林佳翰, 黄仲强, 等. 基于Mixup算法和卷积神经网络的柑橘黄龙病果实识别研究[J]. 华南农业大学学报, 2021, 42(3): 94-101.
Lu Jianqiang, Lin Jiahan, Huang Zhongqiang, et al. Identification of citrus fruit infected with Huanglongbing based on Mixup algorithm and convolutional neural network [J]. Journal of South China Agricultural University, 2021, 42(3): 94-101.
[5] 王璨, 武新慧, 李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报, 2018, 34(5): 144-151.
Wang Can, Wu Xinhui, Li Zhiwei. Recognition of maize and weed based on multiscale hierarchical features extracted by convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 144-151.
[6] 刘仕良. 基于机器视觉的板栗分级设备研究[D]. 北京: 北方工业大学, 2005.
Liu Shiliang. Study on chestnuts sorting equipment based on machine vision [D]. Beijing: North China University of Technology, 2005.
[7] 展慧, 李小昱, 王为, 等. 基于机器视觉的板栗分级检测方法[J]. 农业工程学报, 2010, 26(4): 327-331.
Zhan Hui, Li Xiaoyu, Wang Wei, et al. Determination of chestnuts grading based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 327-331.
[8] 展慧, 李小昱, 周竹, 等. 基于近红外光谱和机器视觉融合技术的板栗缺陷检测[J]. 农业工程学报, 2011, 27(2): 345-349.
Zhan Hui, Li Xiaoyu, Zhou Zhu, et al. Detection of chestnut defect based on data fusion of nearinfrared spectroscopy and machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 345-349.
[9] Jiang Y. Automatic classification of chestnuts based on decision fusion [C]. International Conference on Computer & Electrical Engineering, 2012.
|