[1] 〖ZK(〗何绪刚, 侯杰. 池塘圈养模式研究进展[J]. 华中农业大学学报, 2021, 40(3): 21-29.He Xugang, Hou Jie. Research progress on pond Juanyang mode [J]. Journal of Huazhong Agricultural University 2021, 40(3): 21-29.〖ZK)〗[1] 陈邦勋, 李书民. 中国渔业年鉴[M]. 北京: 中国农业出版社, 2019.
[2] Ai L, Ma B, Shao S, et al. Heavy metals in Chinese freshwater fish: Levels, regional distribution, sources and health risk assessment [J]. Science of the Total Environment, 2022, 853: 158455.
[3] Boyd C E, DAbramo L R, Glencross B D, et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges [J]. Journal of the World Aquaculture Society, 2020, 51(3): 578-633.
[4] Assefa A, Abunna F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish [J]. Veterinary Medicine International, 2018, 2018.
[6] 〖ZK(〗潘彩霞, 薛佳妮, 于辉辉, 等. 基于本体的鱼病诊断专家系统的构建[J]. 广东农业科学, 2015, 42(1): 157-160.Pan Caixia, Xue Jiani, Yu Huihui, et al. Establishment of fish disease diagnosis expert system based on ontology [J]. Guangdong Agricultural Sciences, 2015, 42(1): 157-160.〖ZK)〗[5] 胡根生, 吴继甜, 鲍文霞, 等. 基于改进YOLOv5网络的复杂背景图像中茶尺蠖检测[J]. 农业工程学报, 2021, 37(21): 191-198.
Hu Gensheng, Wu Jitian, Bao Wenxia, et al.Detection of Ectropis oblique in complex background images using improved YOLOv5 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21): 191-198.
[6] Hu X, Liu Y, Zhao Z, et al. Realtime detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network [J]. Computers and Electronics in Agriculture, 2021, 185: 106135.
[7] 苏斐, 张泽旭, 赵妍平, 等. 基于轻量化 YOLO-v3的绿熟期番茄检测方法[J]. 中国农机化学报, 2022, 43(3): 132-137.
Su Fei, Zhang Zexu, Zhao Yanping, et al. Detection of mature green tomato based on lightweight YOLO-v3 [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 132-137.
[8] 王菁, 范晓飞, 赵智慧, 等. 基于YOLO算法的不同品种枣自然环境下成熟度识别[J]. 中国农机化学报, 2022, 43(11): 165-171.
Wang Jing, Fan Xiaofei, Zhao Zhihui, et al. Maturity identification of different jujube varieties under natural environment based on YOLO algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 165-171.
[9] 冼清远. 改进的YOLOv3常见鱼病检测算法[J]. 福建电脑, 2022, 38(7): 11-14.Xian Yuanqing. Improved YOLOv3 algorithm for common fish disease detection [J]. Journal of Fujian Computer, 2022, 38(7): 11-14.
[10] 许竞翔, 欧阳建, 邱懿, 等. 基于改进YOLOv5的水产养殖细菌性鱼病病原细菌检测算法[J]. 渔业现代化, 2022, 49(2): 60-67.
Xu Jingxiang, Ouyang Jian, Qiu Yi, et al. Detection algorithm of pathogenic bacteria of aquaculture bacterial fish disease based on improved YOLOv5 [J]. Fishery Modernization, 2022, 49(2): 60-67.
[11] 王林惠, 兰玉彬, 刘志壮, 等. 便携式柑橘虫害实时检测系统的研制与试验[J]. 农业工程学报, 2021, 37(9): 282-288.
Wang Linhui, Lan Yubin, Liu Zhizhuang, et al. Development and experiment of the portable realtime detection system for citrus pests [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 282-288.
[12] 李震, 洪添胜, 王建, 等. 柑橘全爪螨虫害快速检测仪的研制与试验[J]. 农业工程学报, 2014, 30(14): 49-56.
Li Zhen, Hong Tiansheng, Wang Jian, et al. Development and experiment of Panonychus citri infestation fast detector [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 49-56.
[13] LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[14] Li X, Wang W, Hu X, et al. Selective kernel networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[15] 张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215.
Zhang Bo, Zhang Miaohui, Chen Yunzhong, et al. Crop pest identification based on spatial pyramid pooling and deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 209-215.
[16] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[17] Shi R, Li T, Yamaguchi Y. An attributionbased pruning method for realtime mango detection with YOLO network [J]. Computers and Electronics in Agriculture, 2020, 169: 105214.
(上接第129页)
[11] 李杰, 张军, 衡润来, 等. 基于灰色预测模型的中央空调温湿度系统控制策略[J]. 仪表技术, 2019(2): 39-43.
Li Jie, Zhang Jun, Heng Runlai, et al. Control strategy of temperature and humidity in central air conditioning system based on grey prediction model [J]. Instrumentation Technology, 2019(2): 39-43.
[12] 文渊博, 毛夏煜, 郭温钰, 等. 烟花仓库温湿度无线灰色预警系统设计[J]. 自动化与仪表, 2020, 35(6): 48-53.
Wen Yuanbo, Mao Xiayu, Guo Wenyu, et al. Design of wireless gray early warning system for temperature and humidity in firework warehouse [J]. Automation & Instrumentation, 2020, 35(6): 48-53.
[13] 王彰云, 黎明. 灰色预测模糊PID技术在船舶主机缸套冷却水温控制的应用[J]. 舰船科学技术, 2017, 39(14): 79-81.
Wang Zhangyun, Li Ming. Application of grey prediction fuzzy PID technology in cooling water temperature control of marine main engine cylinder liner [J]. Ship Science and Technology, 2017, 39(14): 79-81.
[14] Tanaka M. A total power control technology on PID temperature controllers [J]. Transactions of the Institute of Electrical Engineers of Japan C, 2016(2): 112-119.
[15] 于薇, 董全林. 灰色预测模糊PID控制在调节阀智能定位系统中的应用[J]. 液压与气动, 2015(12): 39-44.
Yu Wei, Dong Quanlin. Application of grey prediction & fuzzy PID control algorithm in intelligent valve position control system [J]. Chinese Hydraulics & Pneumatics, 2015(12): 39-44.
[16] 王林键. 非线性机器人系统的自适应模糊控制研究[D]. 邯郸: 河北工程大学, 2021.Wang Linjian. Research on adaptive fuzzy control of nonlinear robot system [D]. Handan: Hebei University of Engineering, 2021.
[17] 陈诗慧. 基于神经网络的模糊PID伺服电机控制系统仿真研究[D]. 南京: 南京航空航天大学, 2019.〖JP3〗Chen Shihui. Simulation research of fuzzy PID servo motor control system based on neural[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[18] 阚玉锦, 苏进, 丁响林. 基于模糊PID控制的工程车辆机械液压控制策略研究[J]. 兰州文理学院学报(自然科学版), 2022, 36(1): 78-82, 88.
Kan Yujin, Su Jin, Ding Xianglin. Research on hydraulic control strategy of engineering vehicle based on fuzzy PID control [J]. Journal of Lanzhou University of Arts and Science (Natural Science Edition), 2022, 36(1): 78-82, 88.
[19] 王雪珂. 水电机组灰色模糊PID调速器设计与仿真[D]. 郑州: 郑州大学, 2017.Wang Xueke. Design and simulation of greyfuzzy PID governor for hydro generator unit [D]. Zhengzhou: Zhengzhou University, 2017.
[20] 王海霞, 尤凤翔, 张兵. 基于灰色预测模型的板形PID控制器优化仿真与应用[J]. 兵器装备工程学报, 2021, 42(10): 211-217.
Wang Haixia, You Fengxiang, Zhang Bing. Optimization simulation and application of flatness PID controller based on grey prediction model [J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 211-217.
|