[1] 王钱保, 赵振华, 黎寿丰, 等. 优质鸡鸡冠与开产性状的回归分析[J]. 安徽农业科学, 2017, 45(6): 92-94.
Wang Qianbao, Zhao Zhenhua, Li Shoufeng, et al. Regression analysis between cockscomb and traits at first laying of highquality chicken [J]. Journal of Anhui Agricultural Sciences, 2017, 45(6): 92-94.
[2] 王琨, 刘一帆, 章明, 等. 公鸡鸡冠发育相关候选基因的表达分析[J]. 中国家禽, 2017, 39(22): 5-9.Wang Kun, Liu Yifan, Zhang Ming, et al. Expression of several candidate genes forcomb development in cock [J]. China Poultry, 2017, 39(22): 5-9.
[3] 邓立苗, 陈辉, 马文杰. 基于反射与透射图像的糯玉米叶片机器视觉识别效果分析[J]. 粮油食品科技, 2013, 21(4): 80-83.Deng Limiao, Chen Hui, Ma Wenjie. Study on identification of waxy corn leaf by computer vision based on reflection and transmission image [J]. Science and Technology of Cereals, Oils and Foods, 2013, 21(4): 80-83.
[4] 汪杰, 陈曼龙, 李奎, 等. 基于HSV与形状特征融合的花椒图像识别[J]. 中国农机化学报, 2021, 42(10): 180-185.
Wang Jie, Chen Manlong, Li Kui, et al. Prickly ash image recognition based on HSV and shape feature fusion [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 180-185.
[5] 刘同海, 腾光辉, 付为森, 等. 基于机器视觉的猪体体尺测点提取算法与应用[J]. 农业工程学报, 2013, 29(2): 161-168.
Liu Tonghai, Teng Guanghui, Fu Weisen, et al. Extraction algorithms and applications of pig body size measurement points based on computer vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 161-168.
[6] 谢碧森, 段清, 刘俊晖, 等. 基于迁移学习的家猪图像识别研究[J]. 软件导刊, 2020, 19(7): 36-40.Xie Bisen, Duan Qing, Liu Junhui, et al. Image recognition of domestic pigs based on transfer learning [J]. Software Guide, 2020, 19(7): 36-40.
[7] 陈坤杰, 李航, 于镇伟, 等. 基于机器视觉的鸡胴体质量分级方法[J]. 农业机械学报, 2017, 48(6): 290-295, 372.
Chen Kunjie, Li Hang, Yu Zhenwei, et al. Grading of chicken carcass weight based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 290-295, 372.
[8] 毕敏娜, 张铁民, 庄晓霖, 等. 基于鸡头特征的病鸡识别方法研究[J]. 农业机械学报, 2018, 49(1): 51-57.
Bi Minna, Zhang Tiemin, Zhuang Xiaolin, et al. Recognition method of sick yellow feather chicken based on head features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 51-57.
[9] 庄晓霖. 基于机器视觉的家禽异常行为检测方法研究[D]. 广州: 华南农业大学, 2019.Zhuang Xiaolin. Research on detection methods of poultry abnormal behaviors based on machine vision [D]. Guangzhou: South China Agricultural University, 2019.
|