[1] 邓继忠, 李敏, 袁之报, 等. 基于图像识别的小麦腥黑穗病害诊断技术研究[J]. 东北农业大学学报, 2012, 43(5): 74-77.
Deng Jizhong, Li Min, Yuan Zhibao, et al. Study on diagnosis of Tilletia based on image recognition [J]. Journal of Northeast Agricultural University, 2012, 43(5): 74-77.
[2] 马佳佳, 陈友鹏, 王克强, 等. 基于优化SVM的虫害图像识别研究[J]. 中国粮油学报, 2022, 37(5): 10-15.
[3] 杜晓晨, 张幸, 陆国权. 基于图像处理的甘薯种类识别方法研究[J]. 中国粮油学报, 2014, 29(11): 118-122, 128.
[4] 黄林生, 罗耀武, 杨小冬, 等. 基于注意力机制和多尺度残差网络的农作物病害识别[J]. 农业机械学报, 2021, 52(10): 264-271.
Huang Linsheng, Luo Yaowu, Yang Xiaodong, et al. Crop disease recognition based on attention mechanism and multi-scale residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 264-271.
[5] Zhu X, Zhang X, Sun Z, et al. Identification of oil tea (Camellia oleifera C. Abel) cultivars using EfficientNet—B4 CNN model with attention mechanism [J]. Forests, 2021, 13(1): 1.
[6] Zhang W, Ma H, Li X, et al. Imperfect wheat grain recognition combined with an attention mechanism and residual network [J]. Applied Sciences, 2021, 11(11): 5139.
[7] Zhao Y, Chen J, Xu X, et al. SEV—Net: Residual network embedded with attention mechanism for plant disease severity detection [J]. Concurrency and Computation: Practice and Experience, 2021, 33(10): e6161.
[8] Zhang Y, Liu Y. Identification of navel orange diseases and pests based on the fusion of DenseNet and self-attention mechanism [J]. Computational Intelligence and Neuroscience, 2021, 2021(1): 5436729.
[9] 王春山, 周冀, 吴华瑞, 等. 改进Multi-scale ResNet的蔬菜叶部病害识别[J]. 农业工程学报, 2020, 36(20): 209-217.
Wang Chunshan, Zhou Ji, Wu Huarui, et al. Identification of vegetable leaf diseases based on improved Multi-scale ResNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 209-217.
[10] 刘阳, 高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报, 2021, 37(2): 187-195.
Liu Yang, Gao Guoqin. Identification of multiple leaf diseases using improved SqueezeNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 187-195.
[11] 张善文, 王振, 王祖良. 多尺度融合卷积神经网络的黄瓜病害叶片图像分割方法[J]. 农业工程学报, 2020, 36(16): 149-157.
Zhang Shanwen, Wang Zhen, Wang Zuliang. Method for image segmentation of cucumber disease leaves based on multi-scale fusion convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 149-157.
[12] 张旭, 周云成, 刘忠颖, 等. 基于改进ShuffleNetV2模型的苹果叶部病害识别及应用[J]. 沈阳农业大学学报, 2022, 53(1): 110-118.
Zhang Xu, Zhou Yuncheng, Liu Zhongying, et al. Identification and application of apple leaf diseases based on improved ShuffleNetV2 model [J]. Journal of Shenyang Agricultural University, 2022, 53(1): 110-118.
[13] 王金, 李颜娥, 冯海林, 等. 基于改进的Faster R—CNN的小目标储粮害虫检测研究[J]. 中国粮油学报, 2021, 36(9): 164-171.
[14] 孙俊, 朱伟栋, 罗元秋, 等. 基于改进MobileNetV2的田间农作物叶片病害识别[J]. 农业工程学报, 2021, 37(22): 161-169.
Sun Jun, Zhu Weidong, Luo Yuanqiu, et al. Recognizing the diseases of crop leaves in fields using improved MobileNetV2 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 161-169.
[15] 李国进, 黄晓洁, 李修华. 采用轻量级网络MobileNetV2的酿酒葡萄检测模型[J]. 农业工程学报, 2021, 37(17): 168-176.
Li Guojin, Huang Xiaojie, Li Xiuhua. Detection model for wine grapes using MobileNetV2 lightweight network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 168-176.
[16] 邓杨, 王粤, 尚玉婷. 基于深度学习的大米垩白分割算法研究[J]. 中国粮油学报, 2021, 36(4): 139-144.
[17] 张宁, 吴华瑞, 韩笑, 等. 基于多尺度和注意力机制的番茄病害识别方法[J]. 浙江农业学报, 2021, 33(7): 1329-1338.
Zhang Ning, Wu Huarui, Han Xiao, et al. Tomato disease recognition scheme based on multi-scale and attention mechanism [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1329-1338.
[18] 宁纪锋, 倪静, 何宜家, 等. 基于卷积注意力的无人机多光谱遥感影像地膜农田识别[J]. 农业机械学报, 2021, 52(9): 213-220.
Ning Jifeng, Ni Jing, He Yijia, et al. Convolutional attention based plastic mulching farmland identification via UAV multispectral remote sensing image [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 213-220.
[19] 陆仲达, 张春达, 张佳奇, 等. 双分支网络的苹果叶部病害识别[J]. 计算机科学与探索, 2022, 16(4): 917-926.
[20] 李书琴, 陈聪, 朱彤, 等. 基于轻量级残差网络的植物叶片病害识别[J]. 农业机械学报, 2022, 53(3): 243-250.
Li Shuqin, Chen Cong, Zhu Tong, et al. Plant leaf disease identification based on lightweight residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 243-250.
[21] 章权兵, 胡姗姗, 舒文灿, 等. 基于注意力机制金字塔网络的麦穗检测方法[J]. 农业机械学报, 2021, 52(11): 253-262.
Zhang Quanbing, Hu Shanshan, Shu Wencan, et al. Wheat spikes detection method based on Pyramidal Network of attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 253-262.
[22] 陈智超, 焦海宁, 杨杰, 等. 基于改进MobileNetV2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499.
Chen Zhichao, Jiao Haining, Yang Jie, et al. Garbage image classification algorithm based on improved MobileNetV2 [J]. Journal of Zhejiang University (Engineering Science), 2021, 55(8): 1490-1499.
[23] Yao L, He S, Su K, et al. Facial expression recognition based on spatial and channel attention mechanisms [J]. Wireless Personal Communications, 2022, 125(2): 1483-1500.
[24] Zhao X, Li K, Li Y, et al. Identification method of vegetable diseases based on transfer learning and attention mechanism [J]. Computers and Electronics in Agriculture, 2022, 193: 106703.
[25] 杨晶晶, 韩闰凯, 吴占福, 等. 基于CNN和图像深度特征的雏鸡性别自动鉴别方法[J]. 农业机械学报, 2020, 51(6): 258-263, 92.
Yang Jingjing, Han Runkai, Wu Zhanfu, et al. Automatic recognition method of chick sex based on convolutional neural network and image depth features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 258-263, 92.
[26] 朱明, 张镇府, 黄凰, 等. 基于轻量级神经网络MobileNetV3—Small的鲈鱼摄食状态分类[J]. 农业工程学报, 2021, 37(19): 165-172.
Zhu Ming, Zhang Zhenfu, Huang Huang, et al. Classification of perch ingesting condition using lightweight neural network MobileNetV3—Small [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 165-172.
|