English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (7): 111-117.DOI: 10.13733/j.jcam.issn.2095-5553.2025.07.017

• 农业信息化工程 • 上一篇    下一篇

基于LW—CBAM的荒漠草原植被盖度提取方法研究

解一恒1,张燕斌1, 2,杜健民1,毕玉革1,李文静1,高新超1   

  1. (1. 内蒙古农业大学机电工程学院,呼和浩特市,010018; 
    2. 内蒙古农业大学职业技术学院,内蒙古包头,014109)
  • 出版日期:2025-07-15 发布日期:2025-07-02
  • 基金资助:
    国家自然科学基金(31660137);内蒙古自治区高等学校科学研究项目(NJZY21518);内蒙古自治区高等教育科研重点项目(NJZZ23037);内蒙古自治区自然科学基金联合基金项目(2023LHMS06010);内蒙古自治区一流学科科研专项项目(YLXKZK—NND—046)

Research on extraction method of fractional vegetation coverage in desert steppe based on LW—CBAM

Xie Yiheng1, Zhang Yanbin1, 2, Du Jianmin1, Bi Yuge1, Li Wenjing1, Gao Xinchao1   

  1. (1. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China; 
    2. Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, 014109, China)
  • Online:2025-07-15 Published:2025-07-02

摘要: 为实时、准确、快速提取荒漠草原植被盖度,基于采集的无人机高光谱遥感数据,提出一种融合注意力机制的轻量化网络模型法(LW—CBAM)。该方法将传统的2D卷积核改进为3D深度可分离卷积核,结合多支路方法和注意力机制模块,使模型轻量化的同时提升模型的准确率。为获得最优模型,对模型的批处理大小和学习率进行优化。结果表明,与ResNet34、VGG16、MobileNetV2、MobileNetV3等目前流行的深度学习方法相比,LW—CBAM的分类精度更高,总体分类精度OA为98.97%,Kappa系数为97.94,且该模型对植被盖度的估算精度更高,与真实值的绝对误差仅为0.17%。相较于其他模型,LW—CBAM的参数量降低90%以上,运算量分别为其余4种模型的1.37%、0.74%、13.33%、14.81%。在模型验证阶段,LW—CBAM对植被盖度的估算误差在0.3%以下。为荒漠草原植被盖度估算提供一种切实可行的方法,为草原退化治理提供依据。

关键词: 植被盖度, 高光谱遥感, 深度学习, 轻量化网络, 注意力机制, 荒漠草原

Abstract: In order to extract desert grassland fractional vegetation coverage in real time, accurately and quickly, this paper proposed a lightweight network model method integrated attention mechanism (Lightweight network-Convolutional Block Attention Module, LW—CBAM) based on the collected UAV hyperspectral remote sensing data. This method improved the traditional 2D convolution kernel to 3D deeply separable convolution kernel, and combined the multi-branch method and the attention mechanism module to make the model lightweight and improved the accuracy of the model. In order to obtain the optimal model, this paper optimized the batch size and learning rate of the model. The results showed that compared with popular deep learning methods such as ResNet34, VGG16, MobileNetV2 and MobileNetV3, LW—CBAM had a higher classification accuracy, OA was 98.97%, Kappa coefficient was 97.94, and the model had a higher estimation accuracy for fractional vegetation coverage. The absolute error from the true value was only 0.17%. The LW—CBAMs parameter count was reduced by over 90% compared to the other models, and its computational requirements were respectively 1.37%, 0.74%, 13.33%, and 14.81% of the four other models. During the model validation stage, the estimation error of fractional vegetation coverage by LW—CBAM was below 0.3%. This model provided a feasible method for estimating fractional vegetation coverage in desert steppe and provided a basis for grassland degradation control.

Key words: fractional vegetation coverage, hyperspectral remote sensing, deep learning, lightweight network, attention mechanism, desert steppe

中图分类号: