[1] 俞树毅, 王睿. 草原生态文明建设进路中“围栏困境”的破解[J]. 兰州大学学报(社会科学版), 2022, 50(4):63-73.
Yu Shuyi, Wang Rui. The solution of the “Fence Dilemma”in the construction of grassland ecological civilization [J]. Journal of Lanzhou University (Social Sciences), 2022, 50(4): 63-73.
[2] 石磊, 孙海莲, 王慧敏, 等. 内蒙古草地生态系统质量评估[J]. 北方农业学报, 2021, 49(6): 128-134.
Shi Lei, Sun Hailian, Wang Huimin, et al. Assessment of grassland ecosystem quality in Inner Mongolia [J]. Journal of Northern Agriculture, 2021, 49(6): 128-134.
[3] 臧琛, 尚士友, 王志国, 等. 典型草原退化评价因子及其分级标准的研究[J]. 中国农机化学报, 2016, 37(10):210-213, 245.
Zang Chen, Shang Shiyou, Wang Zhiguo, et al. Study on degradation evaluation factors of typical steppe and its classification standard [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 210-213, 245.
[4] 昝国盛, 王翠萍, 李锋, 等. 第六次全国荒漠化和沙化调查主要结果及分析[J]. 林业资源管理, 2023(1): 1-7.
Zan Guosheng, Wang Cuiping, Li Feng, et al. Key data results and trend analysis of the sixth national survey on desertification and sandification [J]. Forestry Resources Management, 2023(1): 1-7.
[5] 韩芳, 刘朋涛, 牛建明, 等. 50a来内蒙古荒漠草原气候干燥度的空间分布及其演变特征[J]. 干旱区研究, 2013, 30(3): 449-456.
Han Fang, Liu Pengtao, Niu Jianming, et al. Spatial distribution and evolution of climatic aridity in desert steppe in Inner Mongolia in recent 50 years [J]. Arid Zone Research, 2013, 30(3): 449-456.
[6] Oliveira D E T, Freitas D S D, Gianezini M, et al. Agricultural land use change in the Brazilian Pampa biome: The reduction of natural grasslands [J]. Land Use Policy, 2017(63): 394-400.
[7] 郭庆华, 胡天宇, 马勤, 等. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435.
Guo Qinghua, Hu Tianyu, Ma Qin, et al. Advance for the new remote sensing technology in ecosystem ecology research [J]. Chinese Journal of Plant Ecology, 2020, 44(4): 418-435.
[8] 刘剋. 卫星遥感技术县域应用现状及前景分析[J]. 科技风, 2022(35): 7-10.
Liu Ke. Application status and prospect analysis of satellite remote sensing technology in counties [J]. Science and Technology Style, 2022(35): 7-10.
[9] Riihimki H, Luoto M, Heiskanen J. Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data [J]. Remote Sensing of Environment, 2019, 224: 119-132.
[10] Hua L, Michael R R, Tim R M, et al. Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series [J]. Remote Sensing of Environment, 2003, 86(1): 1-18.
[11] 张燕斌, 杜健民, 王圆, 等. 基于无人机高光谱遥感和3D—ResNet的荒漠草原地物分类[J]. 中国农机化学报, 2022, 43(4): 66-73.
Zhang Yanbin, Du Jianmin, Wang Yuan, et al. Terrain classification in desert steppe based on UAV hyperspectral remote sensing and 3D—ResNet [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 66-73.
[12] Xu H, Yao W, Cheng L, et al. Multiple spectral resolution 3D convolutional neural network for hyperspectral image classification [J]. Remote Sensing, 2021, 13(7): 1248.
[13] Andrew G H, Menglong Z, Bo C, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv:1704.04861,2017.
[14] 程镕杰, 杨耘, 李龙威, 等. 基于深度可分离卷积的轻量化残差网络高光谱影像分类[J]. 光学学报, 2023, 43(12): 311-320.
Cheng Rongjie, Yang Geng, Li Longwei, et al. Lightweight residual network based on depthwise separable convolution for hyperspectral image classification [J]. Acta Optica Sinica, 2023, 43(12): 311-320.
[15] 孙一帆, 余旭初, 谭熊, 等. 面向小样本高光谱影像分类的轻量化关系网络[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1336-1348.
Sun Yifan, Yu Xuchu, Tan Xiong, et al. Lightweight relation network for small sample hyperspectral image classification [J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1336-1348.
[16] 潘占磊, 王忠武, 韩国栋, 等. 短花针茅荒漠草原甲烷通量对增温和施氮的响应[J]. 生态环境学报, 2016, 25(2): 209-216.
Pan Zhanlei, Wang Zhongwu, Han Guodong, et al. Response of methane fluxes on warming and nitrogen addition in Stipa breviflora desert steppe [J]. Ecology and Environment Sciences, 2016, 25(2): 209-216.
[17] Ma W, Gong C, Hu Y, et al. The Hughes phenomenon in hyperspectral classification based on the ground spectrum of grasslands in the region around Qinghai Lake [J]. The International Society for Optical Engineering, 2013, 8910.
[18] Taskin K, Hasan T, Merve E Y, et al. Dimensionality reduction and classification of hyperspectral images using object-based image analysis [J]. Journal of the Indian Society of Remote Sensing, 2018, 46(8): 1297-1306.
[19] 孙肖, 彭军还, 赵锋, 等. 基于空间统计学的高光谱遥感影像主成分选择方法[J]. 自然资源遥感, 2022, 34(2): 37-46.
Sun Xiao, Peng Junhuan, Zhao Feng, et al. Principal component selection method of hyperspectral remote sensing images based on spatial statistics [J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
[20] Chaoqun W, Binbin L, Bin J. Fault diagnosis of rolling bearing based on convolutional neural network of convolutional block attention module [J]. Journal of Physics: Conference Series, 2021, 1732(1): 012045.
[21] 陈桂芬, 曾广伟, 陈航, 等. 基于纹理特征和神经网络算法的遥感影像分类方法研究[J]. 中国农机化学报, 2014, 35(1): 270-274.
Chen Guifen, Zeng Guangwei, Chen Hang, et al. Study of RS image classification method based on texture features and neural network algorithm [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(1): 270-274.
[22] Tao Z, Yuge B, Fei H, et al. Transformer attention network and unmanned aerial vehicle hyperspectral remote sensing for grassland rodent pest monitoring research [J]. Journal of Applied Remote Sensing, 2022, 16(4): 044525.
|