[1] 汉永乾,孙步功,张鹏,等.农业采摘机器人研究进展[J].林业机械与木工设备,2023,51(4):4-8.Han Yongqian, Sun Bugong, Zhang Peng, et al. Research progress of agricultural picking robot [J]. Forestry Machinery & Woodworking Equipment, 2023,51(4):4-8.
[2] 周航,杜志龙,武占元,等.机器视觉技术在现代农业装备领域的应用进展[J].中国农机化学报,2017,38(11):86-92.
Zhou Hang, Du Zhilong, Wu Zhanyuan, et al.Application progress of machine vision technology in the field of modern agricultural equipment [J]. Journal of Chinese Agricultural Mechanization, 2017,38(11):86-92.
[3] 宋怀波,尚钰莹,何东健.果实目标深度学习识别技术研究进展[J].农业机械学报,2023,54(1):1-19.
Song Huaibo, Shang Yuying, He Dongjian. Review on deep learning technology for fruit target recognition [J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):1-19.
[4] 黄涛,李华,周桂,等.实例分割方法研究综述[J].计算机科学与探索,2023,17(4):810-825.Huang Tao, Li Hua, Zhou Gui, et al. Survey of research on instance segmentation methods [J]. Journal of Frontiers of Computer Science and Technology,2023,17(4):810-825.
[5] Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis &Machine Intelligence, 2015, 38(1): 142-158.
[6] Bharati P, Pramanik A. Deep learning techniques—R—CNN to Mask R—CNN: A survey [J]. Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2019, 2020: 657-668.
[7] Chen Y, Li W, Sakaridis C, et al. Domain adaptive Faster R—CNN for object detection in the wild [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3339-3348.
[8] He K, Gkioxari G, Dollár P, et al. Mask R—CNN [C].Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[9] Yu Y, Zhang K L, Liu H,et al. Real-time visual localization of the picking points for a ridge-planting strawberry harvesting robot [C]. IEEE Access,2020,8:116556-116568.
[10] 侯贵洋,赵桂杰,王璐瑶.草莓采摘机器人图像识别系统研究[J].软件,2018,39(6):184-188.Hou Guiyang, Zhao Guijie, Wang Luyao. Research on image recognition system of strawberry picking robot [J]. Software, 2018,39(6):184-188.
[11] 刘小刚,范诚,李加念,等. 基于卷积神经网络的草莓识别方法[J].农业机械学报,2020,51(2):237-244.Liu Xiaogang, Fan Cheng, Li Jianian, et al. Identification method of strawberry based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):237-244.
[12] Chen Y, Liu K, Xin Y, et al. Soil image segmentation based on Mask R—CNN [C]. 2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE). IEEE, 2023: 507-510.
[13] 胡奕帆,赵贤林,李佩娟, 等.基于改进YOLOv5的自然环境下番茄果实检测[J].中国农机化学报,2023,44(10):231-237.
Hu Yifan, Zhao Xianlin, Li Peijuan, et al. Tomato fruit detection in natural environment based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechanization,2023,44(10):231-237.
[14] 项新建,周焜,费正顺, 等.基于改进YOLOX算法的杨梅成熟度检测方法[J].中国农机化学报,2023,44(10):201-208.
Xiang Xinjian, Zhou Kun, Fei Zhengshun, et al. Maturity detection method of Myrica rubra based on improved YOLOX algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023,44(10):201-208.
[15] Perez-Borrero I, Marin-Santos D, Gegundez-Arias M E, et al. A fast and accurate deep learning method for strawberry instance segmentation [J]. Computers and Electronics in Agriculture, 2020, 178: 105736.
[16] Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask—RCNN [J]. Computers and Electronics in Agriculture, 2019, 163: 104846.
[17] Zeng J, Ouyang H, Liu M, et al. Multi-scale YOLACT for instance segmentation [J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10): 9419-9427.
[18] Huang M, Xu G, Li J, et al. A method for segmenting disease lesions of maize leaves in real time using attention YOLACT++ [J]. Agriculture, 2021, 11(12): 1216.
|