English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (7): 118-123.DOI: 10.13733/j.jcam.issn.2095-5553.2025.07.018

• 农业智能化研究 • 上一篇    下一篇

基于Mask R—CNN的轻量级草莓实例分割算法

王成军1,江诚婕1,丁凡2,柳炜2   

  1. (1. 安徽理工大学人工智能学院,安徽淮南,232001; 2. 安徽理工大学机械工程学院,安徽淮南,232001)
  • 出版日期:2025-07-15 发布日期:2025-07-02
  • 基金资助:
    安徽省自然科学基金(2208085ME128);安徽理工大学乡村振兴专项(xczx2021—01)

Segmentation algorithm of lightweight strawberry instances based on Mask R—CNN

Wang Chengjun1, Jiang Chengjie1, Ding Fan2, Liu Wei2   

  1. (1. School of Artificial Intelligence, Anhui University of Science and Technology, Huainan, 232001, China;
    2. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan, 232001, China)
  • Online:2025-07-15 Published:2025-07-02

摘要: 针对果园采摘环境复杂、草莓与周边环境难以精确分割、现有模型处理速度无法实现快速分割等问题,提出一种基于Mask R—CNN的轻量级草莓实例分割算法。在原始Mask R—CNN算法的基础上进行改进,采用MobileNetV3网络替代原始的ResNet101骨干网络来轻量化算法,且将原本MobileNetV3残差结构中的通道注意力机制替换成协同注意力机制模块,结合特征金字塔网络架构进行特征提取,实现草莓个体的精准快速定位分割。在标注数据集上进行对比实验,结果表明,改进的Mask R—CNN算法与原始Mask R—CNN算法相比,边框mAP和掩膜mAP分别提升1.75%和4.05%,检测速度提高20.09帧/s,减少模型对硬件存储空间和算力的依赖。

关键词: 草莓图像, 实例分割, 改进Mask R—CNN, CA注意力机制, 轻量化网络

Abstract: In response to the complexity of the orchard picking environment, the difficulty of accurate segmentation between strawberries and the surrounding environment, and the inability of the existing model processing speed to realize fast segmentation, a segmentation algorithm of lightweight strawberry instance based on Mask R—CNN is proposed. On the basis of the original Mask R—CNN algorithm, the MobileNetV3 network is used to replace the original ResNet101 backbone network, the algorithm is lightweight, and the channel attention mechanism in the original MobileNetV3 residual structure is replaced by the collaborative attention mechanism module, which is combined with the feature pyramid network architecture to perform the feature extraction, and the strawberry individuals are realized. The precise and fast localization segmentation of individual strawberries is achieved. Finally, comparison experiments are performed on the self-labeled dataset. The experimental results show that the proposed improved Mask R—CNN algorithm improves border mAP and mask mAP by 1.75% and 4.05% respectively, and the detection speed by 20.09 frames/s compared with the original Mask R—CNN model, which reduces the dependence of the model on hardware storage space and arithmetic power.

Key words: strawberry image, instance segmentation, improved Mask R—CNN, CA attention mechanism, lightweight network

中图分类号: