[1] 徐磊, 陈超.中国桃产业经济分析与发展趋势[J].果树学报,2023,40(1):133-143.〖JP3〗Xu Lei, Chen Chao. Economic situation and development countermeasures of Chinese peach industry [J]. Journal of Fruit Science, 2023, 40(1): 133-143.
[2] 滕光辉, 冀横溢, 庄晏榕, 等. 深度学习在猪只饲养过程的应用研究进展[J]. 农业工程学报, 2022, 38(14): 235-249.
Teng Guanghui, Ji Hengyi, Zhuang Yanrong, et al. Research progress of deep learning in the process of pig feeding [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(14): 235-249.
[3] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021,52(7): 1-18.
Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7):1-18.
[4] 李菊霞, 李艳文, 牛帆, 等. 基于YOLOv4的猪只饮食行为检测方法[J]. 农业机械学报, 2021, 52(3): 251-256.
Li Juxia, Li Yanwen, Niu Fan, et al. Pig diet behavior detection method based on YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(3):251-256.
[5] 胡志伟, 杨华, 娄甜田. 采用双重注意力特征金字塔网络检测群养生猪[J]. 农业工程学报, 2021, 37(5): 166-174.
Hu Zhiwei, Yang Hua, Lou Tiantian. Instance detection of group breeding pigs using a pyramid network with dual attention feature [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 166-174.
[6] 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster R—CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209.
Peng Mingxia, Xia Junfang, Peng Hui. Efficient recognition of cotton and weed in field based on Faster R—CNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209.
[7] 刘莫尘, 高甜甜, 马宗旭, 等. 基于MSRCR—YOLOv4—tiny的田间玉米杂草检测模型[J]. 农业机械学报, 2022, 53(2): 246-255, 335.
Liu Mochen, Gao Tiantian, Ma Zongxu, et al. Target detection model of corn weeds in field environment based on MSRCR algorithm and YOLOv4—tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 246-255, 335.
[8] 鲍文霞, 孙庆, 胡根生, 等. 基于多路卷积神经网络的大田小麦赤霉病图像识别[J]. 农业工程学报, 2020, 36(11): 174-181.
Bao Wenxia, Sun Qing, Hu Gensheng, et al. Image recognition of field wheat scab based on multi-way convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 174-181.
[9] 甘雨, 郭庆文, 王春桃, 等. 基于改进EfficientNet模型的作物害虫识别[J]. 农业工程学报, 2022, 38(1): 203-211.
Gan Yu, Guo Qingwen, Wang Chuntao, et al. Recognizing crop pests using an improved EfficientNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 203-211.
[10] Dyrmann M, Jrgensen R N, Midtiby H S. Robo weed support detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network [J]. Advances in Animal Biosciences, 2017, 8(2): 842-847.
[11] Amara J, Bouaziz B, Algergawy A. A deep learning-based approach for banana leaf diseases classification [C]. Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband. Gesellschaft für Informatik eV, 2017: 79-88.
[12] Veeraballi R K, Nagugari M S, et al. Deep learning based approach for classification and detection of papaya leaf diseases [C]. 18th International Conference on Intelligent Systems Design and Applications, 2020.
[13] 彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162.
Peng Hongxing, Huang Bo, Shao Yuanyuan, et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162.
[14] 穆龙涛, 高宗斌, 崔永杰, 等. 基于改进AlexNet的广域复杂环境下遮挡猕猴桃目标识别[J]. 农业机械学报, 2019, 50(10): 24-34.
Mu Longtao, Gao Zongbin, Cui Yongjie, et al. Kiwifruit detection of far-view and occluded fruit based on improved AlexNet [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 24-34.
[15] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.
Liu Fang, Liu Yukun, Lin Sen, et al. Fast recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 229-237.
[16] Rahnemoonfar M, Sheppard C. Deep count: Fruit counting based on deep simulated learning [J]. Sensors, 2017, 17(4): 905.
[17] Koirala A, Walsh K B, Wang Z, et al. Deep learning for real-time fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO’[J]. Precision Agriculture, 2019, 20(6): 1107-1135.
[18] Kestur R, Meduri A, Narasipura O. MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard [J]. Engineering Applications of Artificial Intelligence, 2019, 77: 59-69.
[19] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. Computer Science, 2018, 4(1): 1-6.
[20] Cao Z, Hidalgo G, Simon T, et al. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186.
[21] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric [C]. IEEE International Conference on Image Processing, 2018: 3645-3649.
|