English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (7): 124-130.DOI: 10.13733/j.jcam.issn.2095-5553.2025.07.019

• 农业智能化研究 • 上一篇    下一篇

基于改进YOLOv7的自然环境乌梅成熟度检测方法#br#

陈萍1,古丽巴哈尔·托乎提1, 2,张国辉1,买买提明·艾尼1   

  1. (1. 新疆大学机械工程学院,乌鲁木齐市,830017; 2. 西安交通大学,西安市,710049)
  • 出版日期:2025-07-15 发布日期:2025-07-02
  • 基金资助:
    国家自然科学基金地区基金项目(12162031);西安交通大学机械制造系统工程国家重点实验室(sklms2022022)

Maturity detection method of black plum in the natural environment based on improved YOLOv7

Chen Ping1, Gulbahar Tohti1, 2, Zhang Guohui1, Mamtimin Geni1   

  1. (1. College of Mechanical Engineering, Xinjiang University, Urumqi, 830017, China; 
    2. Xi'an Jiaotong University, Xi'an, 710049, China)
  • Online:2025-07-15 Published:2025-07-02

摘要: 不同成熟度的乌梅具有不同的药理作用,为判断果园中大部分果实的成熟度,基于YOLOv7目标检测算法进行一系列改进。在 YOLOv7模型的Backbone中添加BiFormer模块以提高网络的特征表达能力;设计果实成熟度精分模块以提高果实成熟度检测的正确率。研究表明,改进的YOLOv7—1模型平均精度均值mAP达到0.805,比改进的YOLOv7—2模型、Faster R—CNN模型、YOLOv3模型、Mask R—CNN模型、 YOLOv5s模型、YOLOv5l模型、YOLOv7模型和YOLOv8模型分别高4.8、12.4、0.9、0.7、12.6、1.7、5.8和12.3个百分点。改进的YOLOv7—1模型可以提高乌梅成熟度识别的准确性。

关键词: 乌梅, 成熟度检测, 深度学习, 自然环境

Abstract: Black plum with different maturity has different pharmacological effects. To judge the maturity of most fruits in the orchard, a series of improvements are carried out based on the YOLOv7 target detection algorithm. The Vision Transformer with Bi-Level Routing Attention (BiFormer) module is added to the Backbone of YOLOv7 model to improve the feature expression ability of the network. The fruit maturity refinement module is designed to improve the correct rate of fruit maturity detection. The study shows that the improved YOLOv7—1 model has a Mean Average Precision (mAP) of 0.805, and is higher by 4.8, 12.4, 0.9, 0.7, 12.6, 1.7, 5.8 and 12.3 percentage points, respectively, compared with the improved YOLOv7—2 model, Faster R—CNN model, YOLOv3 model, Mask R—CNN model, YOLOv5s model, YOLOv5l model, YOLOv7 model, and YOLOv8 model.  The improved YOLOv7—1 model can improve the accuracy of identifying the maturity of black plum.

Key words: black plum, maturity detection, deep learning, natural environment

中图分类号: