[ 1 ] 莫开孟, 石丽芬. 新时代背景下我国蔬菜产业发展策略分析[J]. 农村科学实验, 2019(8): 35-36.
Mo Kaimeng, Shi Lifen. Analysis of the development strategy of China's vegetable industry in the context of the new era [J]. Scientific Experiment in Countryside, 2019(8): 35-36.
[ 2 ] 强胜. 我国杂草学研究现状及其发展策略[J]. 植物保护, 2010, 36(4): 1-5.
Qiang Sheng. Current status and development strategy for weed science in China [J]. Plant Protection, 2010, 36(4): 1-5.
[ 3 ] Zhang Y, Staab E S, Slaughter D C, et al. Automated weed control in organic row crops using hyperspectral species identification and thermal micro‑dosing [J]. Crop Protection, 2012, 41: 96-105.
[ 4 ] 李香菊. 近年我国农田杂草防控中的突出问题与治理对策[J]. 植物保护, 2018, 44(5): 77-84.
Li Xiangju. Main problems and management strategies of weeds in agricultural fields in China in recent years [J]. Plant Protection, 2018, 44(5): 77-84.
[ 5 ] 毛文华, 张银桥, 王辉, 等. 杂草信息实时获取技术与设备研究进展[J]. 农业机械学报, 2013, 44(1): 190-195.
Mao Wenhua, Zhang Yinqiao, Wang Hui, et al. Advance techniques and equipments for real‑time weed detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 190-195.
[ 6 ] Saha D, Cregg B M, Sidhu M K. A review of non‑chemical weed control practices in Christmas tree production [J]. Forests, 2020, 11(5): 554.
[ 7 ] Onyango C M, Marchant J A. Segmentation of row crop plants from weeds using colour and morphology [J]. Computers and Electronics in Agriculture, 2003, 39(3): 141-155.
[ 8 ] Cho S I, Lee D S, Jeong J Y. AE‑automation and emerging technologies: Weed‑plant discrimination by machine vision and artificial neural network [J]. Biosystems Engineering, 2002, 83(3): 275-280.
[ 9 ] 陈树人, 沈宝国, 毛罕平, 等. 基于颜色特征的棉田中铁苋菜识别技术[J]. 农业机械学报, 2009, 40(5): 149-152.
Chen Shuren, Shen Baoguo, Mao Hanping, et al. Copperleaf herb detection from cotton field based on color feature [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(5): 149-152.
[10] Herrmann I, Shapira U, Kinast S, et al. Ground‑level hyperspectral imagery for detecting weeds in wheat fields [J]. Precision Agriculture, 2013, 14: 637-659.
[11] Nieuwenhuizen A T, Hofstee J W, Van Henten E J. Adaptive detection of volunteer potato plants in sugar beet fields [J]. Precision Agriculture, 2010, 11: 433-447.
[12] 邓立苗, 唐俊, 马文杰. 基于图像处理的玉米叶片特征提取与识别系统[J]. 中国农机化学报, 2014, 35(6): 72-75.
Deng Limiao, Tang Jun, Ma Wenjie. Feature extraction and recognition system of maize leaf based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(6): 72-75.
[13] García‑Santillán I D, Montalvo M, Guerrero J M, et al. Automatic detection of curved and straight crop rows from images in maize fields [J]. Biosystems Engineering, 2017, 156: 61-79.
[14] Bakhshipour A, Jafari A, Nassiri S M, et al. Weed segmentation using texture features extracted from wavelet sub‑images [J]. Biosystems Engineering, 2017, 157: 1-12.
[15] Bakhshipour A, Jafari A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features [J]. Computers and Electronics in Agriculture, 2018, 145: 153-160.
[16] 王璨, 武新慧, 张燕青, 等. 基于移位窗口Transformer网络的玉米田间场景下杂草识别[J]. 农业工程学报, 2022, 38(15): 133-142.
Wang Can, Wu Xinhui, Zhang Yanqing, et al. Recognizing weeds in maize fields using shifted window Transformer network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 133-142.
[17] 孙哲, 张春龙, 葛鲁镇, 等. 基于Faster R-CNN的田间西兰花幼苗图像检测方法[J]. 农业机械学报, 2019, 50(7): 216-221.
Sun Zhe, Zhang Chunlong, Ge Luzheng, et al. Image detection method for broccoli seedlings in field based on Faster R-CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 216-221.
[18] Hasan A S M M, Sohel F, Diepeveen D, et al. A survey of deep learning techniques for weed detection from images [J]. Computers and Electronics in Agriculture, 2021, 184: 106067.
[19] Meeradevi, Sindhu N, Monica R M. Machine learning in agriculture application: Algorithms and techniques [J]. International Journal of Innovative Technology and Exploring Engineering, 2020, 9(6): 1140-1146.
[20] Osorio K, Puerto A, Pedraza C, et al. A deep learning approach for weed detection in lettuce crops using multispectral images [J]. AgriEngineering, 2020, 2(3): 471-488.
[21] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[22] 林海涛, 郑群浩, 林嘉仪, 等. 基于RegNet网络的岩石图像模式识别[J]. 现代信息科技, 2022, 6(14): 63-66.
[23] Zhang X, Zhou X, Lin M, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[24] Jin X, Che J, Chen Y. Weed identification using deep learning and image processing in vegetable plantation [J]. IEEE Access, 2021, 9: 10940-10950.
[25] Lee R B. Realtime MPEG video via software decompression on a PA-RISC processor [C]. Digest of Papers. COMPCON'95. Technologies for the Information Superhighway. IEEE, 1995: 186-192.
|