[ 1 ] 孟贵, 刘叶菲, 张旭峰, 等. 1998—2018年我国林业有害生物灾情的时序分析[J]. 林业科学, 2022, 58(7): 134-143.
[ 2 ] 宋玉双, 苏宏钧, 于海英, 等. 2006—2010年我国林业有害生物灾害损失评估[J]. 中国森林病虫, 2011, 30(6): 1-4, 24.
[ 3 ] 张学珍, 贺清雯, 黄季夏. 基于Meta分析的1985—2018年中国森林虫害的时空特征及其影响因素[J]. 地理科学进展, 2023, 42(5): 960-970.
[ 4 ] 张善文, 张传雷, 丁军. 基于改进深度置信网络的大棚冬枣病虫害预测模型[J]. 农业工程学报, 2017, 33(19): 202-208.
Zhang Shanwen, Zhang Chuanlei, Ding Jun. Disease and insect pest forecasting model of greenhouse winter jujube based on modified deep belief network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 202-208.
[ 5 ] Strom J B, Sengupta P P. Predicting preclinical heart failure progression: The rise of machine‑learning for population health [J]. JACC Cardiovasc Imaging, 2022, 15(2): 209-211.
[ 6 ] Mavaie P, Holder L, Beck D, et al. Predicting environmentally responsive transgenerational differential DNA methylated regions (epimutations) in the genome using a hybrid deep‑machine learning approach [J]. BMC Bioinformatics, 2021, 22(1): 575.
[ 7 ] Van Der Burgh H K, Schmidt R, Westeneng H J, et al. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis [J]. Neuroimage Clin, 2017, 13: 361-369.
[ 8 ] Bibi M, Hanif M K, Sarwar M U, et al. Monitoring population phenology of Asian citrus psyllid using deep learning [J]. Complexity, 2021: 4644213.
[ 9 ] Zhao Z, Yang M, Yang L, et al. Predicting the spread of forest diseases and pests [J]. IEEE Access, 2020, 8: 199803-199812.
[10] 张文一, 景天忠, 严善春. 基于机器学习的落叶松毛虫发生面积预测模型[J]. 北京林业大学学报, 2017, 39(1): 85-93.
Zhang Wenyi, Jing Tianzhong, Yan Shanchun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning [J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93.
[11] Hochreiter S, Schmidhuber J. Long short‑term memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
[12] Deihimi A, Orang O, Showkati H. Short‑term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction [J]. Energy, 2013, 57: 382-401.
[13] Kakarla S G, Kondeti P K, Vavilala H P, et al. Weather integrated multiple machine learning models for prediction of dengue prevalence in India [J]. Int J Biometeorol, 2023, 67(2): 285-297.
[14] Kim K‑H, Cho J. Predicting potential epidemics of rice diseases in Korea using multi‑model ensembles for assessment of climate change impacts with uncertainty information [J]. Climatic Change, 2016, 134(1-2): 327-339.
[15] Xiao Q, Li W, Kai Y, et al. Occurrence prediction of pests and diseases in cotton on the basis of weather factors by long short term memory network [J]. BMC Bioinformatics, 2019, 20(S25): 688.
[16] Chen P, Xiao Q, Zhang J, et al. Occurrence prediction of cotton pests and diseases by bidirectional long short‑term memory networks with climate and atmosphere circulation [J]. Computers and Electronics in Agriculture, 2020, 176.
[17] Mirjalili S, Lewis A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51-67.
[18] 李冬辉, 刘功尚, 高龙. 基于Inception-LSTM-Attention的冷水机组传感器偏差故障诊断方法[J]. 中南大学学报(自然科学版), 2023, 54(1): 102-112.
Li Donghui, Liu Gongshang, Gao Long. Fault diagnosis method of chiller sensor deviation based on Inception-LSTM-Attention [J]. Journal of Central South University(Science and Technology), 2023, 54(1): 102-112.
[19] Tang J, Li P, Huang X, et al. An exact zoeppritz based prestack inversion using whale optimization particle filter algorithm under bayesian framework [J]. Ieee Transactions on Geoscience and Remote Sensing, 2023, 61.
[20] Kong D, Chen Y, Li N, et al. Tool wear estimation in end milling of titanium alloy using NPE and a novel WOA-SVM model [J]. Ieee Transactions on Instrumentation and Measurement, 2020, 69(7): 5219-5232.
[21] Bahdanau D. Neural machine translation by jointly learning to align and translate [J]. arxiv preprint arxiv: 1409. 0473, 2014.
|