[1] 贾童童. 植物病虫草害防治中生物技术的应用分析[J]. 科教导刊(电子版), 2018(4): 253-254.
[2] 梁栋, 刘娜, 张东彦, 等. 利用成像高光谱区分冬小麦白粉病与条锈病[J]. 红外与激光工程, 2017, 46(1): 42-50.
Liang Dong, Liu Na, Zhang Dongyan, et al. Discrimination of powdery mildew and yellow rust of winter wheat using highresolution hyperspectra and imageries [J]. Infrared and Laser Engineering, 2017, 46(1): 42-50.
[3] 马超, 袁涛, 姚鑫锋, 等. 基于HOG+SVM的田间水稻病害图像识别方法研究[J]. 上海农业学报, 2019, 35(5): 131-136.
Ma Chao, Yuan Tao, Yao Xinfeng, et al. Study on image recognition method of rice disease in field based on HOG+SVM [J]. Acta Agriculturae Shanghai, 2019, 35(5): 131-136.
[4] Aziz S, Bashir M, Mughal O, et al. Image pattem classification for plant disease identification using local tridirectional features [C]. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON).IEEE, 2019.
[5] Jiang P, Chen Y, Liu B, et al. Realtime detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks [J]. Ieee Access, 2019, 7: 59069-59080.
[6] Zhang S, Huang W, Zhang C. Threechannel convolutionalneural networks for vegetable leaf disease recognition [J]. Cognitive Systems Research, 2019, 53: 31-41.
[7] Arsenovic M, Karanovic M, Sladojevic S, et al. Solving current limitations of deep learning based approaches for plant disease detection [J]. Symmetry, 2019, 11(7): 939.
[8] Singh S, Gupta I, Gupta S, et al. Deep learning based automated detection of diseases from apple leaf images [J]. Computers, Materials & Continua, 2022, 71(1): 1849-1866.
[9] Liang Q, Xiang S, Hu Y, et al. PD2SENet: Computerassisted plant disease diagnosis and severity estimation network [J]. Computers and Electronics in Agriculture, 2019, 157: 518-529.
[10] 万军杰, 祁力钧, 卢中奥, 等. 基于迁移学习的 GoogLeNet 果园病虫害识别与分级[J]. 中国农业大学学报, 2021, 26(11): 209-221.
Wan Junjie, Qi Lijun, Lu Zhongao, et al. Recognition and grading of diseases and pests in orchard by GoogLeNet based on transfer learning [J]. Journal of China Agricultural University, 2021, 26(11): 219-221.
[11] Pratap V K, Kumar N S. Highprecision multiclass classification of chili leaf disease through customized EffecientNetB4 from chili leaf images [J]. Smart Agricultural Technology, 2023, 5: 100295.
[12] 李西兴, 陈佳豪, 吴锐, 等. 基于改进MaxViT的辣椒病害识别分类方法[J]. 华中农业大学学报, 2024, 43(2): 123-133.
Li Xixing, Chen Jiahao, Wu Rui, et al. A method for identifying and classifying pepper diseases based on improved MaxViT [J]. Journal of Huazhong Agricultural University, 2024, 43(2): 123-133.
[13] Uzhinskiy A V, Ososkov G A, Goncharov P V, et al. One-shot learning with triplet loss for vegetation classification tasks [J]. Компьютерная оптика, 2021, 45(4): 608-614.
[14] GB/T 17980.34—2000, 农药田间药效试验准则(一)杀菌剂防治梨黑星病[S].
[15] Qin X, Zhang Z, Huang C, et al. U2-Net: Going deeper with nested Ustructure for salient object detection [J]. Pattern recognition, 2020, 106: 107404.
[16] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]. Medical Image Computing and ComputerAssisted InterventionMICCAI 2015: 18th International Conference, Munich, 2015: 234-241.
[17] Zhang L, Shen Z, Lin W, et al. U2 Netbased singlepixel imaging salient object detection [J]. Current Optics and Photonics, 2022, 6(5): 463-472.
[18] Wang L, Lu H, Wang Y, et al. Learning to detect salient objects with imagelevel supervision [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 136-145.
[19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[20] Ioffe S. Batch normalization: Accelerating deep network training by reducing internal covariate shift [J]. arxiv preprint arxiv: 1502.03167, 2015.
[21] Olshausen B A, Anderson C H, Van Essen D C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information [J]. Journal of Neuroscience, 1993, 13(11): 4700-4719.
[22] Hu J, Shen L, Sun G. Squeezeandexcitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[23] Jaderberg M, Simonyan K, Zisserman A.Spatial transformer networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[24] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
|