[1] 宋怀波, 尚钰莹, 何东健. 果实目标深度学习识别技术研究进展[J]. 农业机械学报, 2023, 54(1): 1-19.
Song Huaibo, Shang Yuying, He Dongjian. Review on deep learning technology for fruit target recognition [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 1-19.
[2] 李聪,李玉洁,李小占,等. 基于机器视觉的红枣外部品质检测技术研究进展[J]. 食品工业科技, 2022, 43(20): 447-453.Li Cong, Li Yujie, Li Xiaozhan, et al. Research progress on external quality detection and classification technology of jujube based on machine vision [J]. Science and Technology of Food Industry, 2022, 43(20): 447-453.
[3] 文怀兴, 王俊杰, 韩昉. 基于改进残差网络的红枣缺陷检测分类方法研究[J]. 食品与机械, 2020, 36(1): 161-165.〖JP2〗Wen Huaixing, Wang Junjie, Han Fang. Research on defect detection and classification of jujube [J]. Food & Machine, 2020, 36(1): 161-165.〖JP〗
[4] 张忠志, 薛欢庆, 范广玲. 基于改进卷积神经网络的红枣缺陷识别[J].食品与机械, 2021, 37(8):158-162.〖JP2〗Zhang Zhizhong, Xue Huanqing, Fan Guangling. Research on jujube defect recognition method based on improved convolution neural network [J]. Food & Machine, 2021, 37(8): 158-162.
[5] Guo Z, Zheng H, Xu X, et al. Quality grading of jujubes using composite convolutional neural networks in combination with RGB color space segmentation and deep convolutionalgenerative adversarial networks [J]. Journal of Food Process Engineering, 2021, 44(2): e13620.
[6] Zhao Y, Cai L. Reducing the covariate shift by mirror samples in cross domain alignment[C]. 35th Conference on Neural Information Processing Systems, 2021.
[7] Ju J, Zheng H, Xu X, et al. Classification of jujube defects in small data sets based on transfer learning [J]. Neural Computing and Applications, 2022, 34(5): 3385-3398.
[8] 孟德宇, 束俊, 徐宗本. 从机器学习到元学习的方法论演变[J]. 中国计算机学会通讯, 2021, 17(8): 76-84.
Meng Deyu, Shu Jun, Xu Zongben. Methodological evolution from machine learning to meta-learning [J]. Communications of the CCF, 2021, 17(8): 76-84.
[9] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks [C]. International Conference on Machine Learning, 2017: 1126-1135.
[10] 杨志锐, 郑宏, 郭中原, 等. 基于网中网卷积神经网络的红枣缺陷检测[J]. 食品与机械, 2020, 36(2): 140-145.Yang Zhirui, Zheng Hong, Guo Zhongyuan, et al. Detection of jujube defects based on the rural network with network convolution [J]. Food & Machine, 2020, 36(2): 140-145.
[11] Karras T, Aittala M, Laine S, et al. Alias-free generative adversarial networks [C]. Proceedings of the Conference on Neural Information Processing Systems, 2021:852-863.
[12] 周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15.
Zhou Bojun, Chen Zhiyu. Survey of few-shot image classification based on deep meta-learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15.
[13] 刘复昌, 李晨璇, 王延斌, 等. 结合MAML和Dirichlet过程的小样本点云分类[J]. 计算机辅助设计与图形学学报, 2023, 35(11): 1674-1682.
Liu Fuchang, Li Chenxuan, Wang Yanbin, et al. Few-shot point clouds classification based on MAML and Dirichlet process [J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(11): 1674-1682.
[14] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning [C]. Advances in Neural Information Processing Systems, 2016: 3637-3645.
[15] Antoniou A, Edwards H, Storkey A. How to train your MAML: A step-by-step guide [C]. Proceedings of the International Conference on Learning Representations, 2019: 1-11.
[16] 赵戈伟, 许升全, 谢娟英. DL—MAML:一种新的蝴蝶物种自动识别模型[J]. 计算机研究与发展, 2024, 61(3): 674-684.
Zhao Gewei, Xu Shengquan, Xie Juanying. DL—MAML:An innovative model for automatically identifying butterfly species [J]. Journal of Computer Research and Development, 2024, 61(3): 674-684.
[17] Baik S, Choi M, Choi J. Meta-learning with adaptive hyperparameters [J]. Advance in Neural Information Processing Systems, 2020, 33: 20755-20765.
[18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[19] Zhang H, Wu C, Zhang Z, et al. ResNeSt: Split-attention networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2736-2746.
[20] Xia Z, Pan X, Song S, et al. Vision transformer with deformable attention [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4794-4803.
[21] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning [C]. Proceedings of the Conference and Workshop on Neural Information Processing Systems, 2016: 3637-3645.
[22] Snell J, Swersky K, Zemel R S. Prototypical networks for few-shot learning [C]. Proceedings of the 31st Conference on Neural Information Processing Systems, 2017: 1-15.
|