[ 1 ] 张子迎. 多机器人协作及环境建模技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[ 2 ] Hao Y, Laxton B, Benson E R, et al. Differential flatness‑based formation following of a simulated autonomous small grain harvesting system [J]. Transactions of the ASAE, 2004, 47(3): 933-941.
[ 3 ] Emmi L, Gonzalez‑de‑Soto M, Pajares G, et al. New trends in robotics for agriculture: Integration and assessment of a real fleet of robots [J]. The Scientific World Journal, 2014(1): 404059.
[ 4 ] 韩艺琳, 王丽丽, 杨洪勇, 等. 基于强化学习的多机器人系统的环围编队控制[J]. 复杂系统与复杂性科学, 2023, 20(3): 97-102.
[ 5 ] Barrientos A, Colorado J, Cerro J, et al. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots [J]. Journal of Field Robotics, 2011, 28(5): 667-689.
[ 6 ] 蒋朝阳, 兰天然, 郑晓妮, 等. 分布式多车协同视觉SLAM系统[J]. 汽车工程, 2022, 44(12): 1809-1817, 1833.
[ 7 ] 王耀南, 江一鸣, 姜娇, 等. 机器人感知与控制关键技术及其智能制造应用[J]. 自动化学报, 2023, 49(3): 494-513.
[ 8 ] Parker L E. Path planning and motion coordination in multiple mobile robot teams [J]. Encyclopedia of complexity and system science, 2009: 5783-5800.
[ 9 ] Du X, Tan K K. Vision‑based approach towards lane line detection and vehicle localization [J]. Machine Vision and Applications, 2016, 27: 175-191.
[10] 胡钊政, 刘佳蕙, 黄刚, 等. 融合WiFi、激光雷达与地图的机器人室内定位[J]. 电子与信息学报, 2021, 43(8): 2308-2316.
Hu Zhaozheng, Liu Jiahui, Huang Gang, et al. Integration of WiFi, laser, and map for robot indoor localization [J]. Journal of Electronics and Information Technology, 2021, 43(8): 2308-2316.
[11] 董胜龙, 陈卫东, 席裕庚. 多移动机器人编队的分布式控制系统[J]. 机器人, 2000(6): 433-438.
[12] 高继勋, 黄全振, 赵媛媛. 基于领航跟随的多机器人编队控制方法[J]. 中国测试, 2021, 47(11): 8-13.
[13] 张瑞雷, 李胜, 陈庆伟, 等. 复杂地形环境下多机器人编队控制方法[J]. 控制理论与应用, 2014, 31(4): 531-537.
[14] 韩青, 张常亮. Leader‑Followers多机器人编队控制方法[J]. 机床与液压, 2017, 45(9): 1-4, 22.
[15] Matarić M J, Sukhatme G S, Østergaard E H. Multi‑robot task allocation in uncertain environments [J]. Autonomous Robots, 2003, 14: 255-263.
[16] Guerrero J, Miñana J J, Valero O, et al. Indistinguishability operators applied to task allocation problems in multi‑agent systems [J]. Applied Sciences, 2017, 7(10): 963.
[17] 昝杰. 多自主移动机器人协作的关键技术研究[D]. 西安: 长安大学, 2014.
[18] Moorehead S J, Wellington C K, Gilmore B J, et al. Automating orchards: A system of autonomous tractors for orchard maintenance [C]. Proceedings of the IEEE International Conference of Intelligent Robots and Systems Workshop on Agricultural Robotics, 2012.
[19] Kim J, Son H I. A voronoi diagram‑based workspace partition for weak cooperation of multi‑robot system in orchard [J]. IEEE Access, 2020, 8: 20676-20686.
[20] D'Urso G, Smith S L, Mettu R, et al. Multi‑vehicle refill scheduling with queueing [J]. Computers and Electronics in Agriculture, 2018, 144: 44-57.
[21] 张子迎, 陈云飞, 王宇华, 等. 基于启发式深度Q学习的多机器人任务分配算法[J]. 哈尔滨工程大学学报, 2022, 43(6): 857-864.
Zhang Ziying, Chen Yunfei, Wang Yuhua, et al. Multi‑robot task allocation algorithm b Multirobot task allocation algorithm based on heuristically accelerated deep Q network [J]. Journal of Harbin Engineering University, 2022, 43(6): 857-864.
[22] Wan L, Lan X, Zhang H, et al. A review of deep reinforcement learning theory and application [J]. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 67-81.
[23] Blender T, Buchner T, Fernandez B, et al. Managing a mobile agricultural robot swarm for a seeding task [C]. Conference of the IEEE Industrial Electronics Society. IEEE, 2016: 6879-6886.
[24] Khamis A, Hussein A, Elmogy A. Multi‑robot task allocation: A review of the state‑of‑the‑art [J]. Cooperative Robots and Sensor Networks, 2015: 31-51.
[25] 李晓静, 余东满. 基于自适应蚁群算法的农用智能机器人路径规划[J]. 中国农机化学报, 2019, 40(9): 189-193.
Li Xiaojing, Yu Dongman. Path planning of agricultural intelligent robots based on an algorithm of self‑adaptive ant colony [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 189-193.
[26] Drenjanac D, Klausner L, Kühn E, et al. Semantic shared spaces for task allocation in a robotic fleet for precision agriculture [C]. 7th Metadata and Semantics Research Conference (MTSR), 2013: 440-446.
[27] Sherali H D, Driscoll P J. Evolution and state‑of‑the‑art in integer programming [J]. Journal of Computational & Applied Mathematics, 2000, 124(1-2): 319-340.
[28] Guillet A, Lenain R, Thuilot B, et al. Formation control of agricultural mobile robots: A bidirectional weighted constraints approach [J]. Journal of Field Robotics, 2017, 34(7): 1260-1274.
[29] 姚竟发, 刘静, 滕桂法, 等. 机群协同作业路径动态优化[J]. 中国农机化学报, 2021, 42(6): 103-110.
Yao Jingfa, Liu Jing, Teng Guifa, et al. Dynamic optimization of cooperative operation path for agricultural fleet [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 103-110.
[30] 王志伟, 许江淳, 李玉惠, 等. 基于PSO-EACO的农业机器人路径规划仿真研究[J]. 中国农机化学报, 2018, 39(10): 103-106.
Wang Zhiwei, Xu Jiangchun, Li Yuhui, et al. Simulation research on agricultural robot path planning based on PSO-EACO [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(10): 103-106.
[31] 雷艳敏. 多机器人系统的动态路径规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
[32] 高明, 唐洪, 张鹏. 机器人集群路径规划技术研究现状[J]. 国防科技大学学报, 2021, 43(1): 127-138.
[33] 张丹露, 孙小勇, 傅顺, 等. 智能仓库中的多机器人协同路径规划方法[J]. 计算机集成制造系统, 2018, 24(2): 410-418.
[34] Kolendo P, Śmierzchalski R, Jaworski B. Fitness function scaling in the evolutionary method of path planning [C]. 2011 IEEE International Symposium on Industrial Electronics, 2011: 1989-1994.
[35] Chiddarwar S S, Babu N R. Conflict free coordinated path planning for multiple robots using a dynamic path modification sequence [J]. Robotics & Autonomous Systems, 2011, 59(7-8): 508-518.
[36] Gonzalez‑De‑Santos P, Ribeiro A, Fernandez‑Quintanilla C, et al. Fleets of robots for environmentally‑safe pest control in agriculture [J]. Precision Agriculture, 2017.
[37] Conesa‑Muñoz J, Gonzalez‑de‑Soto M, Gonzalez‑de‑Santos P, et al. Distributed multi‑level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks [J]. Sensors, 2015, 15(3): 5402-5428.
[38] Conesa‑Muñoz J, Ribeiro A, Andujar D, et al. Multi‑path planning based on a NSGA-II for a fleet of robots to work on agricultural tasks [C]. 2012 IEEE Congress on Evolutionary Computation, 2012: 1-8.
[39] Hasegawa J, Kurihara K, Nishiuchi N. Collision‑free path planning method for mobile robot [C]. IEEE International Conference on Systems, Man and Cybernetics, 2002, 3: 6.
[40] 李文鑫, 张璠, 姚竟发, 等. 联合收割机与运粮车协同作业调度技术研究[J]. 中国农机化学报, 2023, 44(2): 119-125.
Li Wenxin, Zhang Fan, Yao Jingfa, et al. Research on the cooperative operation scheduling technology of combine harvester and grain truck [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 119-125.
[41] Noguchi N, Will J, Ishii K, et al. Development of master‑slave robot system‑obstacle avoidance algorithm [C]. Automation Technology for Off‑Road Equipment Proceedings of the 2002 Conference, 2002: 432.
[42] 刘福琳, 李庆鑫. 多移动机器人混合避障算法的编队策略[J]. 系统仿真学报, 2024, 36(3): 726-734.
[43] 刘志杰, 刘恒, 毛文菊, 等. 面向多机器人的传统苹果园无线通信信号传播特性研究[J]. 农业机械学报, 2022, 53(8): 283-293.
Liu Zhijie, Liu Heng, Mao Wenju, et al. Wireless signal propagation characteristics of traditional apple orchard for multi‑robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 283-293.
[44] Arkin R C, Balch T, Nitz E. Communication of behavorial state in multi‑agent retrieval tasks [C]. Proceedings IEEE International Conference on Robotics and Automation. IEEE, 1993: 588-594.
[45] Pitla S K, Luck J D, Shearer S A. Multi‑robot system control architecture (MRSCA) for agricultural production [C]. 2010 Pittsburgh, Pennsylvania, 2010: 1.
[46] Ju C, Son H I. Modeling and control of heterogeneous agricultural field robots based on Ramadge‑Wonham theory [J]. IEEE Robotics and Automation Letters, 2019, 5(1): 48-55.
[47] Albani D, Ijsselmuiden J, Haken R, et al. Monitoring and map** with robot swarms for agricultural applications [C]. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2017: 1-6.
[48] Albani D, Nardi D, Trianni V. Field coverage and weed map** by UAV swarms [C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 4319-4325.
[49] 周渝. 农业多机器人系统无线通信技术研究[D]. 杨凌: 西北农林科技大学, 2014.
[50] 朱海. 农业多机器人无线通信平台的研究与设计[D]. 杨凌: 西北农林科技大学, 2015.
|