English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (10): 233-240.DOI: 10.13733/j.jcam.issn.2095-5553.2024.10.034

• 农业信息化工程 • 上一篇    下一篇

田块尺度水稻农情遥感监测平台设计与试验

邹耀鹏1,裴杰1,2,刘一博1,方华军3, 4,方芷辰1,易启亮1   

  1. (1.中山大学测绘科学与技术学院,广东珠海,519082; 2.自然资源部华南热带亚热带自然资源监测
    重点实验室,广东珠海,519082; 3.中国科学院地理科学与资源研究所生态系统观测与模拟重点实验室,
    北京市,100101; 4.中科吉安生态环境研究院,江西吉安,343000)
  • 出版日期:2024-10-15 发布日期:2024-09-30
  • 基金资助:
    井冈山农高区省级科技专项“揭榜挂帅”项目(20222—051244);广东省基础与应用基础研究基金(2021A1515110442)

Development and application of a field‑scale rice crop remote sensing monitoring platform

Zou Yaopeng1, Pei Jie1, 2, Liu Yibo1, Fang Huajun3, 4, Fang Zhichen1, Yi Qiliang1   

  1. (1. School of Geospatial Engineering and Science, Sun Yat‑sen University, Zhuhai, 519082, China; 2. Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai, 519082, China; 3. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; 
    4. The Zhongke‑Ji'an Institute for Eco‑Environmental Sciences, Ji'an, 343000, China)
  • Online:2024-10-15 Published:2024-09-30

摘要: 为解决我国水稻种植过程中由于药肥施用不当和缺乏系统化管理所导致的单产低、农业面源污染严重等问题,并针对现有农情系统数据源单一的现状,以多源数据的协同监测为核心,基于WebGIS和Ant Design搭建前端框架,整合多源时空地理数据和分布式数据存储方法,采用Python、HTML、Javascript+CSS、ArcGIS Server、Mapbox Studio以及PostgreSQL等技术,构建一个前后端分离(F/B Separation)、云端实时更新的田块尺度水稻农情监测平台,以实现水稻生长参数反演、产量预估、田块参数查询、时空数据可视化与统计分析等功能。以江西兴桥镇与井冈山国家农业科技园为试验区,应用该系统的案例分析表明2022年兴桥镇水稻田块分布破碎,且镇内东北区域水稻产量高于西南,水稻田产量介于6 750~8 250 kg/hm2;同时发现试验区内田块水稻的长势与历史药肥施用量存在明显关联,药肥施用策略显著影响田块水稻长势。综上,本平台在多源数据协同作用下,能较好地满足大区域下田块水稻监测所要求的准确性、全面性,并在一定程度上实现水稻长势与产量的归因分析,可作为实现田块尺度水稻农情多源精细监测的有效示例。

关键词: 水稻, 遥感, 农情监测, 多源异构数据, WebGIS

Abstract: To address the pressing challenges associated with inadequate fertilizer and pesticide application, as well as the absence of systematic management, resulting in low yield per unit area and agricultural non‑point source pollution in rice cultivation in China, this study focuses on the integration of multi‑source data through collaborative monitoring. A frontend‑backend decoupled, cloud‑based, real‑time, field‑level rice crop monitoring platform was constructed, based on WebGIS technology and the Ant Design front‑end framework. The platform construction incorporated heterogeneous spatiotemporal geospatial data from multiple sources and utilized a distributed data storage architecture, employing techniques such as Python, HTML, JavaScript+CSS, ArcGIS Server, Mapbox Studio web services, and the PostgreSQL database. Consequently, the platform offered a myriad of functionalities, including rice growth parameter inversion, yield prediction, plot parameter query, as well as spatiotemporal data visualization and statistical analysis, among other functionalities. The system was tested in two experimental areas: Xingqiao Town and Jinggangshan National Agricultural Science and Technology Park in Jiangxi Province. The visual analysis of the platform indicates that the distribution of rice fields in Xingqiao Town in 2022 was fragmented, with higher rice yields in the northeastern region compared to the southwest. The rice yields in the town ranged between 6 750 kg/hm2 and 8 250 kg/hm2. The study also found a significant correlation between rice growth in the experimental area and the historical application of pesticides and fertilizers, indicating that application strategies have a considerable impact on rice growth. In conclusion, this platform, through the collaborative integration of multiple data sources, can effectively fulfill the accuracy and comprehensiveness requirements for rice monitoring at a large regional scale. It also enables attribution analysis of rice growth and yield to some extent. This platform serves as an effective example of fine‑grained, multi‑source monitoring of rice farming at the field scale.

Key words: rice, remote sensing, crop condition monitoring, multiple heterogeneous data, WebGIS

中图分类号: