[ 1 ] Chen L, Chang J, Wang Y, et al. Disclosing the future food security risk of China based on crop production and water scarcity under diverse socioeconomic and climate scenarios [J]. Science of the Total Environment, 2021, 790: 148110.
[ 2 ] Chen A, He H, Wang J, et al. A study on the arable land demand for food security in China [J]. Sustainability, 2019, 11(17): 4769.
[ 3 ] 武奕, 易龙, 曾维. 我国水稻生产现状及发展对策研究[J]. 农业与技术, 2015, 35(18): 143.
[ 4 ] Fritz S, See L, Bayas J C L, et al. A comparison of global agricultural monitoring systems and current gaps [J]. Agricultural Systems, 2019, 168: 258-272.
[ 5 ] 吴炳方, 蒙继华, 李强子, 等. “全球农情遥感速报系统(CropWatch)”新进展[J]. 地球科学进展, 2010, 25(10): 1013-1022.
[ 6 ] Defourny P, Bontemps S, Bellemans N, et al. Near real‑time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world [J]. Remote Sensing of Environment, 2019, 221: 551-568.
[ 7 ] 王耀武. 基于3G和WebGIS的基层农情管理信息系统[D]. 北京: 中国农业科学院, 2012.
[ 8 ] 鲁旭涛, 张丽娜, 刘昊, 等. 智慧农业水田作物网络化精准灌溉系统设计[J]. 农业工程学报, 2021, 37(17): 71-81.
Lu Xutao, Zhang Lina, Liu Hao, et al. Design of the networked precision irrigation system for paddy field crops in intelligent agriculture [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 71-81.
[ 9 ] 蒙继华, 程志强, 董文全, 等.面向精准农业的农田信息遥感获取系统[J]. 高技术通讯, 2018, 28(6): 477-487.
[10] Rajalakshmi P, Mahalakshmi S D. IOT based crop‑field monitoring and irrigation automation [C]. 2016 10th International Conference on Intelligent Systems and Control (ISCO). IEEE, 2016: 1-6.
[11] 廖建尚. 基于物联网的温室大棚环境监控系统设计方法[J]. 农业工程学报, 2016, 32(11): 233-243.
Liao Jianshang. Design of agricultural greenhouse environment monitoring system based on internet of things [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 233-243.
[12] 朱霏雨, 刘木华, 袁海超, 等. 基于物联网的菜田土壤温湿度监测系统设计[J]. 中国农机化学报, 2022, 43(6): 190-198.
Zhu Feiyu, Liu Muhua, Yuan Haichao, et al. Design of soil temperature and moisture monitoring system for vegetable field based on the Internet of Things [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 190-198.
[13] 何志文, 吴峰, 张会娟, 等. 我国精准农业概况及发展对策[J]. 中国农机化, 2009(6): 23-26.
He Zhiwen, Wu Feng, Zhang Huijuan, et al. General situation and development of precision agriculture in our country [J]. Journal of Chinese Agricultural Mechanization, 2009(6): 23-26.
[14] Sangjan W, Carter A H, Pumphrey M O, et al. Development of a raspberry pi‑based sensor system for automated in‑field monitoring to support crop breeding programs [J]. Inventions, 2021, 6(2): 42.
[15] 阎晓军, 王维瑞, 梁建平. 北京市设施农业物联网应用模式构建[J]. 农业工程学报, 2012, 28(4): 149-154.
Yan Xiaojun, Wang Weirui, Liang Jianping. Application mode construction of internet of things (IOT) for facility agriculture in Beijing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(4): 149-154.
[16] 谢晓金, 申双和, 李映雪, 等. 高温胁迫下水稻红边特征及SPAD和LAI的监测[J]. 农业工程学报, 2010, 26(3): 183-190.
[17] 涂又, 姜亮亮, 刘睿, 等. 1982—2015年中国植被NDVI时空变化特征及其驱动分析[J]. 农业工程学报, 2021, 37(22): 75-84.
Tu You, Jiang Liangliang, Liu Rui, et al. Spatiotemporal changes of vegetation NDVI and its driving forces in China during 1982—2015 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 75-84.
[18] 钱凤魁, 王贺兴, 项子璇. 基于潜在土地利用冲突识别的主城区周边耕地保护[J]. 农业工程学报, 2021, 37(19): 267-275.
Qian Fengkui, Wang Hexing, Xiang Zixuan. Cultivated land protection in the periphery of the main urban areas based on potential land use conflict identification [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 267-275.
[19] 余永琦, 余艳锋, 彭柳林, 等. 江西省水稻生产结构的年际波动特征与趋势分析——基于水稻内部结构调整的视角[J]. 江西农业学报, 2020, 32(11): 130-138.
[20] 周泉, 黄国勤. 江西省水稻绿色生产的问题与对策研究[J]. 中国农业资源与区划, 2020, 41(2): 9-15.
[21] 中华人民共和国国家统计局. 中国统计年鉴[M].北京: 中国统计出版社, 2022.
|