[1]
罗锡文, 廖娟, 邹湘军, 等. 信息技术提升农业机械化水平[J]. 农业工程学报, 2016, 32(20): 1-14.
Luo Xiwen, Liao Juan, Zou Xiangjun, et al. Enhancing agricultural mechanization level through information technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 1-14.
[2]
何文斌, 魏爱云, 明五一, 等. 基于机器视觉的水果品质检测综述[J]. 计算机工程与应用, 2020, 56(11): 10-16.
He Wenbin, Wei Aiyun, Ming Wuyi, et al. Survey of fruit quality detection based on machine vision [J]. Computer Engineering and Applications, 2020, 56(11): 10-16.
[3]
杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181.
Yang Tao, Li Xiaoxiao. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171-181.
[4]
Zhang L, Jia J D, Gui G. Deep learning based improved classification system for designing tomato harvesting robot [J]. IEEE Access,2018, 6(9): 67940-67950.
[5]
Kuznetsova A, Maleva T, V Solovie v. Using YOLOv3 algorithm with pre and postprocessing for apple detection in fruitharvesting robot [J]. Agronomy, 2020, 10(7): 1016.
[6]
Ling Xiao, Zhao Yuanshen, Gong Liang, et al. Dualarm cooperation and implementing for robotic harvesting tomato using binocular vision [J]. Robotics and Autonomous Systems, 2018, 114: 134-143.
[7]
Ge Y, Xiong Y, Tenorio G L, et al. Fruit localization and environment perception for strawberry harvesting robots [J]. IEEE Access, 2019, 7: 147642-147652.
[8]
Feng Qingchun, Zou Wei, Fan Pengfei, et al. Design and test of robotic harvesting system for cherry tomato [J]. International Journal of Agricultural and Biological Engineering, 2018, 11(1): 96-100.
[9]
郑太雄, 江明哲, 冯明驰. 基于视觉的采摘机器人目标识别与定位方法研究综述[J]. 仪器仪表学报, 2021, 42(9): 28-51.
Zheng Tai, Jiang Mingzhe, Feng Mingchi. Vision based target recognition and location for picking robot: A review [J]. Chinese Journal of Scientific Instrument, 2021, 42(9): 28-51.
[10]
王瑾, 王瑞荣, 李晓红. 番茄采摘机器人目标识别方法研究[J]. 江苏农业科学, 2021, 49(20): 217-222.
[11]
李寒, 陶涵虓, 崔立昊, 等. 基于SOMKmeans算法的番茄果实识别与定位方法[J]. 农业机械学报, 2021, 52(1): 23-29.
Li Han, Tao Hanxiao, Cui Lihao, et al. Recognition and localization method of tomato based on SOM Kmeans algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 23-29.
[12]
穆龙涛, 高宗斌, 崔永杰, 等. 基于改进AlexNet的广域复杂环境下遮挡猕猴桃目标识别[J]. 农业机械学报, 2019, 50(10): 24-34.
Mu Longtao, Gao Zongbin, Cui Yongjie, et al. Kiwifruit detection of farview and occluded fruit based on improved AlexNet [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 24-34.
[13]
熊俊涛, 刘振, 汤林越, 等. 自然环境下绿色柑橘视觉检测技术研究[J]. 农业机械学报, 2018, 49(4): 45-52.
Xiong Juntao, Liu Zhen, Tang Linyue, et al. Visual Detection Technology of Green Citrus under Natural Environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 45-52.
[14]
龙洁花, 赵春江, 林森, 等. 改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报, 2021, 37(18): 100-108.
Long Jiehua, Zhao Chunjiang, Lin Sen, et al. Segmentation method of the tomato fruits with different maturities under greenhouse environment based on improved Mask R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 100-108.
[15]
陈新, 伍萍辉, 祖绍颖, 等. 基于改进SSD轻量化神经网络的番茄疏花疏果农事识别方法[J]. 中国瓜菜, 2021, 34(9): 38-44.
Chen Xin, Wu Pinghui, Zu Shaoying, et al. Study on identification method of thinning flower and fruit of tomato based on improved SSD lightweight neural network [J]. China Cucurbits and Vegetables, 2021, 34(9): 38-44.
[16]
彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162.
Peng Hongxing, Huang Bo, Shao Yuanyuan, et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162.
[17]
赵辉, 乔艳军, 王红君, 等. 基于改进YOLOv3的果园复杂环境下苹果果实识别[J]. 农业工程学报, 2021, 37(16): 127-135.
Zhao Hui, Qiao Yanjun, Wang Hongjun, et al. Apple fruit recognition in complex orchard environment based on improved YOLOv3 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 127-135.
[18]
刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.
Liu Fang, Liu Yukun, Lin Sen, et al. Fast Recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 229-237.
[19]
武星, 齐泽宇, 王龙军, 等. 基于轻量化YOLOv3卷积神经网络的苹果检测方法[J]. 农业机械学报, 2020, 51(8): 17-25.
Wu Xing, Qi Zeyu, Wang Longjun, et al. Apple detection method based on lightYOLOv3 convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 17-25.
[20]
黄怡蒙, 易阳. 融合深度学习的机器人目标检测与定位[J]. 计算机工程与应用, 2020, 56(24): 181-187.
Huang Yimeng, Yi Yang. Robot object detection and localization based on deep learning [J]. Computer Engineering and Applications, 2020, 56(24): 181-187.
[21]
王红君, 牟其松, 岳有军, 等. 基于YOLOv3的水果采摘通用检测模型研究[J]. 中国科技论文, 2021, 16(3): 336-342.
Wang Hongjun, Mou Qisong, Yue Youjun, et al. Research on universal detection model of fruit picking based on YOLOv3 [J]. China Science Paper, 2021, 16(3): 336-342.
|