English

Journal of Chinese Agricultural Mechanization

Journal of Chinese Agricultural Mechanization ›› 2024, Vol. 45 ›› Issue (12): 224-229.DOI: 10.13733/j.jcam.issn.20955553.2024.12.033

• Research on Agricultural Intelligence • Previous Articles     Next Articles

Sugarcane node detection method based on improved YOLOv5s

Xie Zhongjian1, Liao Hengyu1, Wen Chunming1, Li Shangping1, Zhang Yaya1, Wu Weilin1, 2   

  1. (1. School of Physics and Electronic Information, Guangxi Minzu University, Nanning, 530006, China;
    2. Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou, 543002, China)
  • Online:2024-12-15 Published:2024-12-03

基于改进YOLOv5s的蔗节检测方法

谢忠坚1,廖珩宇1,文春明1,李尚平1,张亚亚1,吴伟林1, 2   

  1. (1. 广西民族大学物理与电子信息学院,南宁市,530006; 
    2. 梧州学院广西机器视觉与智能控制重点实验室,广西梧州,543002)
  • 基金资助:
    国家自然科学基金项目(52165009);广西科技重大专项项目(桂科AA22117006);广西高校中青年教师科研基础能力提升项目(2023KY0176)

Abstract:

In order to address the challenges posed by the high model complexity and low detection efficiency of existing sugarcane node detection algorithms, a lightweight detection network YOLOv5s-SG2E was designed. Firstly, this study enhanced the network's capability to detect small targets by refining the structure of the small target network, which involved the removal of medium and small-scale detection heads and the incorporation of super-large-scale detection headed to enhance the model's perception of small targets. Secondly, GhostNetV2 replaced the C3 module, and GSConv replaced standard convolutions in the neck network to reduce the models complexity. Finally, the channel attention mechanism ECA was introduced at the end of the backbone network to enhance the model's learning abilities and strengthen the network's ability to extract the sugarcane nodes features. The self-made sugarcane node dataset was tested, and the experimental results showed that the YOLOv5s-SG2E model achieved a 96.4% accuracy rate for sugarcane node recognition, a 96.8% recall rate, and an average accuracy mAP@0.5 of 98.4%. These metrics represented improvements of 0.6%, 2.4% and 1.0%, respectively, over the original YOLOv5s model. Furthermore, YOLOv5s-SG2E exhibited significant reductions in model size, with an 89.8% volume reduction, a 95.03% reduction in parameters, and a 55.06% decrease in computational workload. Additionally, detection time was shortened by 31.6%. When compared to other mainstream one-stage target detection algorithms, YOLOv5s-SG2E outperforms them, which can realize the efficient identification and detection of sugarcane stem nodes.

Key words: sugarcane node detection, YOLOv5, small target, lightweight, ECA

摘要: 针对现有甘蔗茎节检测算法模型复杂度高、检测效率低的问题,设计一种轻量化检测网络YOLOv5s-SG2E。首先,对YOLOv5s进行小目标网络结构改进,删除中、小尺度检测头并增加超大尺度检测头,以提升网络模型对小目标的感知能力;其次,在颈部网络中引入GhostNetV2替换C3模块、GSConv替换标准卷积以降低模型复杂度;最后,在主干网络末端增加通道注意力机制ECA以提高模型的学习能力,强化网络对茎节特征的提取能力。对自建甘蔗茎节数据集进行测试,结果表明:改进模型YOLOv5s-SG2E对茎节识别精确率为96.4%、召回率为96.8%、平均精度均值mAP@0.5为98.4%,相较YOLOv5s原始模型分别提升0.6%、2.4%和1.0%;YOLOv5s-SG2E模型体积相对减少89.8%,参数量减少95.03%,计算量减少55.06%,检测时间缩短31.6%,优于其他主流一阶段目标检测算法,可实现甘蔗茎节的高效识别检测。

关键词: 甘蔗茎节识别, YOLOv5, 小目标, 轻量化, ECA

CLC Number: