Journal of Chinese Agricultural Mechanization ›› 2025, Vol. 46 ›› Issue (5): 115-124.DOI: 10.13733/j.jcam.issn.2095-5553.2025.05.016
• Research on Agricultural Intelligence • Previous Articles Next Articles
Shi Guozhao1, Zhang Fugui1, 2, Gou Yuanmin1, Zheng Le1, Cai Jingyong1, Feng Chi1
Online:
2025-05-15
Published:
2025-05-14
石国照1,张富贵1, 2,苟园旻1,郑乐1,蔡景勇1,冯池1
基金资助:
CLC Number:
Shi Guozhao, Zhang Fugui, , Gou Yuanmin, Zheng Le, Cai Jingyong, Feng Chi. Research progress on target recognition and picking point localization of fruit picking robots [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(5): 115-124.
石国照, 张富贵, , 苟园旻, 郑乐, 蔡景勇, 冯池. 水果采摘机器人目标识别与采摘点定位研究进展[J]. 中国农机化学报, 2025, 46(5): 115-124.
[1] Zhao J, Tsuchikawa S, Ma T, et al. Modal analysis and experiment of a lycium barbarum L. Shrub for efficient vibration harvesting of fruit [J]. Agriculture, 2021, 11(6): 519. [2] Lehnert C, English A, McCool C, et al. Autonomous sweet pepper harvesting for protected cropping systems [J]. IEEE Robotics and Automation Letters, 2017, 2(2): 872-879. [3] Lehnert C, McCool C, Sa I, et al. Performance improvements of a sweet pepper harvesting robot in protected cropping environments [J]. Journal of Field Robotics, 2020, 37(7): 1197-1223. [4] Williams H A M, Jones M H, Nejati M, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms [J]. Biosystems Engineering, 2019, 181: 140-156. [5] Williams H, Ting C, Nejati M, et al. Improvements to and largescale evaluation of a robotic kiwifruit harvester [J]. Journal of Field Robotics, 2020, 37(2): 187-201. [6] Feng Q, Zou W, Fan P, et al. Design and test of robotic harvesting system for cherry tomato [J]. International Journal of Agricultural and Biological Engineering, 2018, 11(1): 96-100. [7] Yin H, Sun Q, Ren X, et al. Development, integration, and field evaluation of an autonomous citrusharvesting robot [J]. Journal of Field Robotics, 2023, 40(6): 1363-1387. [8] Ling X, Zhao Y, Gong L, et al. Dualarm cooperation and implementing for robotic harvesting tomato using binocular vision [J]. Robotics and Autonomous Systems, 2019, 114: 134-143. [9] Silwal A, Davidson J R, Karkee M, et al. Design, integration, and field evaluation of a robotic apple harvester [J]. Journal of Field Robotics, 2017, 34(6): 1140-1159. [10] Kang H, Zhou H, Chen C. Visual perception and modeling for autonomous apple harvesting [J]. IEEE Access, 2020, 8: 62151-62163. [11] Tafuro A, Adewumi A, Parsa S, et al. Strawberry picking point localization ripeness and weight estimation [C]. International Conference on Robotics and Automation. IEEE, 2022: 2295-2302. [12] Zhong Z, Xiong J, Zheng Z, et al. A method for litchi picking points calculation in natural environment based on main fruit bearing branch detection [J]. Computers and Electronics in Agriculture, 2021, 189: 106398. [13] 朱智惟, 单建华, 余贤海, 等. 基于YOLOv5s的番茄采摘机器人目标检测技术 [J].传感器与微系统, 2023, 42(6): 129-132.Zhu Zhiwei, Shan Jianhua, Yu Xianhai, et al.Target detection technology of tomato picking robot base on YOLOv5s [J].Transducer and Microsystem Technologys,2023,42(6):129-132. [14] Wachs J P, Stern H I, Burks T, et al. Low and highlevel visual featurebased apple detection from multimodal images [J]. Precision Agriculture, 2010, 11: 717-735. [15] 熊俊涛, 邹湘军, 王红军, 等. 基于Retinex图像增强的不同光照条件下的成熟荔枝识别[J]. 农业工程学报, 2013, 29(12): 170-178. Xiong Juntao, Zou Xiangjun, Wang Hongjun, et al. Recognition of ripe litchi in different illumination conditions based on Retinex image enhancement [J]. Tvansactions of the Chinese Society of Agricultural Engineering,2013, 29(12): 170-178. [16] Lü J, Wang Y, Xu L, et al. A method to obtain the nearlarge fruit from apple image in orchard for singlearm apple harvesting robot [J]. Scientia Horticulturae, 2019, 257: 108758. [17] Li M. Research on color correction method of greenhouse tomato plant image based on high dynamic range imaging [J]. INMATEHAgricultural Engineering, 2021, 64(2). [18] Xu Z F, Jia R S, Liu Y B, et al. Fast method of detecting tomatoes in a complex scene for picking robots [J]. IEEE Access, 2020, 8: 55289-55299. [19] Luo Z, Yu H, Zhang Y. Pine cone detection using boundary equilibrium generative adversarial networks and improved YOLOv3model [J]. Sensors, 2020, 20(16): 4430. [20] Lu J, Sang N. Detecting citrus fruits and occlusion recovery under natural illumination conditions [J]. Computers and Electronics in Agriculture, 2015, 110: 121-130. [21] 司永胜, 乔军, 刘刚,等.苹果采摘机器人果实识别与定位方法[J]. 农业机械学报, 2010,41(9): 148-153. Si Yongsheng, Qiao Jun, Liu Gang, et al.Recognition and location of fruits for apple harvesting robot [J].Transactions of the Chinese Society for Agricultural Machinery,2010, 41(9): 148-153. [22] 齐锐丽, 陈曼龙, 杨宗浩,等. 基于HSV模型与改进的OTSU算法花椒图像分割 [J].中国农机化学报, 2019, 40(11): 155-160. Qi Ruili, Chen Manlong, Yang Zonghao, et al. Image segmentation of Sichuan pepper based on HSV model and improved OTSU algorithm [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 155-160. [23] 熊俊涛, 邹湘军, 陈丽娟,等. 基于机器视觉的自然环境中成熟荔枝识别[J]. 农业机械学报, 2011, 42(9): 162-166. Xiong Juntao,Zou Xiangjun,Chen Lijuan, et al.Recognition of mature litchi in natural environment based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(9): 162-166. [24] Lin G, Zou X. Citrus segmentation for automatic harvester combined with adaboost classifier and LeungMalik filter bank [J]. IFACPapersOnLine, 2018, 51(17): 379-383. [25] Wu J, Zhang B, Zhou J, et al. Automatic recognition of ripening tomatoes by combining multifeature fusion with a bilayer classification strategy for harvesting robots [J]. Sensors, 2019, 19(3): 612. [26] Zou Z, Chen K, Shi Z, et al. Object detection in 20 years: A survey [J]. Proceedings of the IEEE, 2023,111(3):257-276. [27] Gao F, Fu L, Zhang X, et al. Multiclass fruitonplant detection for apple in SNAP system using Faster R—CNN [J]. Computers and Electronics in Agriculture, 2020, 176: 105634. [28] Sa I, Ge Z, Dayoub F, et al. Deepfruits: A fruit detection system using deep neural networks [J]. Sensors, 2016, 16(8): 1222. [29] 闫建伟, 赵源, 张乐伟, 等. 改进Faster—RCNN自然环境下识别刺梨果实[J]. 农业工程学报, 2019, 35(18): 143-150. Yan Jianwei, Zhao Yuan, Zhang Lewei, et al. Recognition of Rosa roxbunghii in natural environment based on improved Faster—RCNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 143-150. [30] Tu S, Pang J, Liu H, et al. Passion fruit detection and counting based on multiple scale faster R—CNN using RGB—D images [J]. Precision Agriculture, 2020, 21: 1072-1091. [31] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO—V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426. [32] Yu Y, Zhang K, Liu H, et al. Realtime visual localization of the picking points for a ridgeplanting strawberry harvesting robot [J]. IEEE Access, 2020, 8: 116556-116568. [33] Fu L, Wu F, Zou X, et al. Fast detection of banana bunches and stalks in the natural environment based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 194: 106800. [34] 刘洁, 李燕, 肖黎明, 等. 基于改进YOLOv4模型的橙果识别与定位方法[J]. 农业工程学报, 2022, 38(12): 173-182. Liu Jie, Li Yan, Xiao Liming, et al. Recognition and location method of orange based on improved YOLOv4 model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(12): 173-182. [35] Cao Z, Mei F, Zhang D, et al. Recognition and detection of persimmon in a natural environment based on an improved YOLOv5 model [J]. Electronics, 2023, 12(4): 785. [36] 彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J].农业工程学报, 2018, 34(16): 155-162. Peng Hongxing, Huang Bo, Shao Yuanyuan, et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162. [37] Liu G, Nouaze J C, Touko Mbouembe P L, et al. YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3 [J]. Sensors, 2020, 20(7): 2145. [38] Lin G, Tang Y, Zou X, et al. Guava detection and pose estimation using a lowcost RGB—D sensor in the field [J]. Sensors, 2019, 19(2): 428. [39] 李艳文, 左朝阳, 王登奎, 等. 基于改进型SegNet的苹果采摘点分割算法研究[J].燕山大学学报,2022, 46(5): 455-460. Li Yanwen, Zuo Chaoyang, Wang Dengkui, et al. Research on apple picking point segmentation algorithm based on improved SegNet [J].Journal of Yanshan University, 2022, 46(5): 455-460. [40] Li J, Tang Y, Zou X, et al. Detection of fruitbearing branches and localization of litchi clusters for visionbased harvesting robots [J]. IEEE Access, 2020, 8: 117746-117758. [41] LópezBarrios J D, Escobedo Cabello J A, GómezEspinosa A, et al. Green sweet pepper fruit and peduncle detection using Mask R—CNN in greenhouses [J]. Applied Sciences, 2023, 13(10): 6296. [42] Zhang T, Huang Z, You W, et al. An autonomous fruit and vegetable harvester with a lowcost gripper using a 3D sensor [J]. Sensors, 2019, 20(1): 93. [43] Li H, Lee W S, Wang K. Immature green citrus fruit detection and counting based on fast normalized cross correlation (FNCC) using natural outdoor colour images [J]. Precision Agriculture, 2016, 17: 678-697. [44] Bac C W, Hemming J, Van Henten E J. Robust pixelbased classification of obstacles for robotic harvesting of sweetpepper [J]. Computers and Electronics in Agriculture, 2013, 96: 148-162. [45] 田有文,赖兴涛,张芳,等.基于高光谱成像的苹果果梗完整性识别方法研究[J].沈阳农业大学学报, 2018, 49(2): 234-241. Tian Youwen, Lai Xingtao, Zhang Fang, et al. Research on identification method of apple stem integrity based on hyperspectral imaging [J]. Journal of Shenyang Agricultural University, 2018, 49(2): 234-241. [46] Liu X, Zhao D, Jia W, et al. A method of segmenting apples at night based on color and position information [J]. Computers and Electronics in Agriculture, 2016, 122: 118-123. [47] Xiong J, Lin R, Liu Z, et al. The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment [J]. Biosystems Engineering, 2018, 166: 44-57. [48] Xiang R. Image segmentation for whole tomato plant recognition at night [J]. Computers and Electronics in Agriculture, 2018, 154: 434-442. [49] Liang C, Xiong J, Zheng Z, et al. A visual detection method for nighttime litchi fruits and fruiting stems [J]. Computers and Electronics in Agriculture, 2020, 169: 105192. [50] 吕继东, 赵德安, 姬伟,等. 采摘机器人振荡果实动态识别[J].农业机械学报, 2012, 43(5):173-178, 196. Lü Jidong, Zhao Dean, Ji Wei, et al. Dynamic recognition of oscillating fruit for harvesting robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 173-178, 196. [51] 吕继东, 赵德安, 姬伟,等. 苹果采摘机器人对振荡果实的快速定位采摘方法[J].农业工程学报, 2012, 28(13): 48-53. Lü Jidong, Zhao Dean, Ji Wei, et al. Fast positioning method of apple harvesting robot for oscillating fruit [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(13): 48-53. [52] 赵德安, 沈甜, 陈玉, 等. 苹果采摘机器人快速跟踪识别重叠果实[J]. 农业工程学报, 2015, 31(2): 22-28. Zhao Dean,Shen Tian,Chen Yun,et al. Fast tracking and identification method of target fruit for apple picking robots [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 22-28. [53] 苟园旻, 闫建伟, 张富贵, 等. 水果采摘机器人视觉系统与机械手研究进展[J].计算机工程与应用,2023, 59(9): 13-26. Gou yuanmin, Yan Jianwei, Zhang Fugui, et al. Research progress on vision system and manipulator of fruit picking robot [J]. Computer Engineering and Applications, 2023, 59(9): 13-26. [54] Sun L, Cai J R, Zhao J W. A vision system based on TOF 3D imaging technology applied to robotic citrus harvesting [J]. Intelligent Automation & Soft Computing, 2015, 21(3): 345-354. [55] Benavides M, CantónGarbín M, SánchezMolina J A, et al. Automatic tomato and peduncle location system based on computer vision for use in robotized harvesting [J]. Applied Sciences, 2020, 10(17): 5887. [56] Yaguchi H, Nagahama K, Hasegawa T, et al. Development of an autonomous tomato harvesting robot with rotational plucking gripper [C]. 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2016: 652-657. [57] Jun J, Kim J, Seol J, et al. Towards an efficient tomato harvesting robot: 3D perception, manipulation, and endeffector [J]. IEEE Access, 2021, 9: 17631-17640. [58] Lehnert C, Sa I, McCool C, et al. Sweet pepper pose detection and grasping for automated crop harvesting [C]. International Conference on Robotics and Automation, 2016: 2428-2434. [59] Eizentals P, Oka K. 3D pose estimation of green pepper fruit for automated harvesting [J]. Computers and Electronics in Agriculture, 2016, 128: 127-140. [60] Ge Y, Xiong Y, From P J. Symmetrybased 3D shape completion for fruit localisation for harvesting robots [J]. Biosystems Engineering, 2020, 197: 188-202. [61] Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in nonstructural environment based on Mask R—CNN [J]. Computers and Electronics in Agriculture, 2019, 163: 104846. [62] 朱立学, 赖颖杰, 张世昂, 等. 基于改进U—Net的火龙果采摘图像分割和姿态估计方法[J]. 农业机械学报, 2023, 54(11): 180-188. Zhu Lixue, Lai Yingjie, Zhang Shiang, et al. Image segmentation and pose estimation method for pitaya picking robot based on enhanced U—Net [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 180-188. |
[1] | Yu Qiang, Shi Fuxi. Kiwifruit flowering recognition method based on lightweight improved YOLOv5s [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(5): 106-114. |
[2] | Zhan Caixue, Song Zhiyu, Han Yu, Sun Xiangling, Jiang Qinghai. Research progress on mechanized blueberry harvesting technology and equipment [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(3): 49-53. |
[3] | Zhang Junning, Yan Ying, Hu Huan, Bi Zeyang, Xing Yu. Multi-target detection of cherry tomatoes under complex backgrounds based on Sim—YOLO [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(3): 238-245. |
[4] | Liu Shuteng, Li Jianping, Zhang Kuo, Li Shaobo, Xie Jinyan, Zhang Zhu. Optimization and test of structural parameters of fruit basket handling and holding device [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(2): 56-63. |
[5] | Zhong Yuan, , Chen Zehong, Zheng Junbin, Song Shuran, Sun Daozong, Liu Hongshan. Online fruit tree target recognition device based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(1): 164-170. |
[6] | Li Chunyu, Guo Xiaoqin, Yang Jingjing, Li Zhonghua. Fruit image recognition based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(1): 198-203. |
[7] | Cong Yuyang, Liu Xiaohong, Wang Xingyu, Li Shiyuan, Zhang Hong. Research status and development of microwave vacuum drying technology [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9): 118-126. |
[8] | Sang Yinan, Xu Zenglai, Wang Qiong, Ge Haitao, Wang Dianguang. Design of a wheeled flower picking robot: Taking Abelmoschus manihot (Linn.) Medicus as an example [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9): 202-208. |
[9] | Chen Meng, Chen Feng, Zhang Hua, Ding Wenqin, Zhan Caixue. Design of flexible picking dexterous hand for ellipsoidal fruits and vegetables [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 32-37. |
[10] | Fan Yuhang, Song Weidong, Wang Jiaoling, Wang Mingyou, Ding Tianhang, Zhou Dehuan. Application progress of artificial neural network in the field of fruit and vegetable drying [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 112-119. |
[11] | Liu Jun, , Kong Jie, Pi Jie, Zhou Chenggang. Research status and development trend of fruit and vegetable sorting equipment [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 120-125. |
[12] | Yuan Yingchun, Zhang Ao, He Zhenxue, Zhang Ruochen, Lei Hao. Peach fruit real⁃time recognition in complex orchard environment based on improved YOLOv4-tiny [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 254-261. |
[13] | Xiao Ying, Xie Minglu, Jing Yijia, Tong Yifei. Design and experiment of fruit and vegetable picking action collection system [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(7): 34-40. |
[14] | Wang Lei, , Zhong Kangsheng, , Guo Xiaobao, Sheng Bin, Xiao Bo, Jing Lei. Research on prediction model of drying moisture content of tangerine peel heat pump based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(7): 97-103. |
[15] | Zhang Yanjun, , Zhao Jianxin, . Research on daylily joint detection algorithm based on multiple neural networks [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(7): 228-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296