[1] 罗珍, 宁初光, 李祚禛, 等. 番茄、野樱莓提取物抗光老化功效及机制研究[J]. 食品工业科技, 2023, 44(16): 395-402.Luo Zhen, Ning Chuguang, Li Zuozhen, et al. Antiphotoaging effect and mechanism of tomato and aronia melanocarpa extract [J]. Science and Technology of Food Industry, 2023, 44(16): 395-402.
[2] 刘洁, 高润蕾, 崔瑛, 等. 番茄产业发展现状与内蒙古巴彦淖尔市番茄产业发展建议[J]. 现代农业, 2023, 48(3): 47-51.
[3] Javidan S M, Banakar A, Vakilian K A, et al. Diagnosis of grape leaf diseases using automatic K—means clustering and machine learning [J]. Smart Agricultural Technology, 2023, 3: 100081.
[4] Devi V B, Prabavathi R, Subha P, et al. An efficient and robust random forest algorithm for crop disease detection [C]. International Conference on Communication, Computing and Internet of Things (IC3IoT). IEEE, 2022: 1-4.
[5] Bhatia A, Chug A, Singh A P. Plant disease detection for high dimensional imbalanced dataset using an enhanced decision tree approach [J]. International Journal of Future Generation Communication and Networking, 2020, 13(4): 71-8.
[6] Zhou J, Li J, Wang C, et al. A vegetable disease recognition model for complex background based on region proposal and progressive learning [J]. Computers and Electronics in Agriculture, 2021, 184: 106101.
[7] Gao R, Wang R, Feng L, et al. Dualbranch, efficient, channel attentionbased crop disease identification [J]. Computers and Electronics in Agriculture, 2021, 190: 106410.
[8] Diana Andrushia A, Mary Neebha T, Trephena Patricia A, et al. Imagebased disease classification in grape leaves using convolutional capsule network [J]. Soft Computing, 2023, 27(3): 1457-1470.
[9] 路阳, 刘婉婷, 林立媛, 等. CNN与BiLSTM相结合的水稻病害识别新方法[J]. 江苏农业科学, 2023, 51(20): 211-217.Lu Yang, Liu Wanting, Lin Liyuan, et al. A new method for rice disease identification by combining CNN and BiLSTM [J]. Jiangsu Agricultural Sciences, 2023, 51(20): 211-217.
[10] Wang F, Rao Y, Luo Q, et al. Practical cucumber leaf disease recognition using improved Swin transformer and small sample size [J]. Computers and Electronics in Agriculture, 2022, 199: 107163.
[11] Zeng W, Li M. Crop leaf disease recognition based on SelfAttention convolutional neural network [J]. Computers and Electronics in Agriculture, 2020, 172: 105341.
[12] Zhao Y, Sun C, Xu X, et al. RIC—Net: A plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism [J]. Computers and Electronics in Agriculture, 2022, 193: 106644.
[13] 李云红, 张蕾涛, 谢蓉蓉, 等. 基于AT—DenseNet网络的番茄叶片病害识别方法[J]. 江苏农业科学, 2023, 51(21): 209-217.Li Yunhong, Zhang Leitao, Xie Rongrong, et al. An identification method for tomato leaf disease based on AT—DenseNet network [J]. Jiangsu Agricultural Sciences, 2023, 51(21): 209-217.
[14] Zhao S, Liu J, Bai Z, et al. Crop pest recognition in real agricultural environment using convolutional neural networks by a parallel attention mechanism [J]. Frontiers in Plant Science, 2022, 13: 839572.
[15] 方晨晨, 石繁槐. 基于改进深度残差网络的番茄病害图像识别[J]. 计算机应用, 2020, 40(S1): 203-208.Fang Chenchen,Shi Fanhuai. Image recognition of tomato diseases based on improved deep residual network [J]. Journal of Computer Applications, 2020, 40(S1): 203-208.
[16] 王明英, 王嘉, 裴志远, 等. 基于深度学习的番茄叶部病害识别方法研究[J]. 农业灾害研究, 2023, 13(8): 25-27.
[17] Zhu X, Li J, Jia R, et al. LADNet: A novel light weight model for early apple leaf pests and diseases classification [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 20(2): 1156-1169.
[18] He Zheng, AI Challenger. AI Challenger 2018[EB/OL].https: //github.com/AIChallenger/AI_Challenger_2018,2018-11-03.
[19] Singh D, Jain N, Jain P, et al. PlantDoc: A dataset for visual plant disease detection [M]. Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, 2020: 249-253.
[20] Huang M L, Chang Y H. Dataset of tomato leaves [J].Mendeley Data, 2020, 1: 2020.
[21] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[22] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv preprint arXiv: 1409.1556, 2014.
[23] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[24] Tan M, Le Q. EfficientNet: Rethinking model scaling for convolutional neural networks [C]. International Conference on Machine Learning. PMLR, 2019: 6105-6114.
[25] Ma N, Zhang X, Zheng H T, et al. ShuffleNetv2: Practical guidelines for efficient CNN architecture design [C]. Proceedings of the European Conference on Computer Vision, 2018: 116-131.
[26] Howard A, Sandler M, Chu G, et al. Searching for MobileNetv3 [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[27] Wang D, Wang J, Ren Z, et al. DHBP: A dualstream hierarchical bilinear pooling model for plant disease multitask classification [J]. Computers and Electronics in Agriculture, 2022, 195: 106788.
[28] Ghofrani A, Mahdian Toroghi R. Knowledge distillation in plant disease recognition [J]. Neural Computing and Applications, 2022, 34(17): 14287-14296.
[29] Omeiza D, Speakman S, Cintas C, et al. Smooth grad—CAM++: An enhanced inference level visualization technique for deep convolutional neural network models [J]. arXiv preprint arXiv: 1908.01224, 2019.
|