[1] 胡亚云, 傅虹飞, 寇莉萍. 模拟超市销售期间圣女果质构特性变化的研究[J]. 食品工业科技, 2012, 33(4): 383-386.
Hu Yayun, Fu Hongfei, Kou Liping. Study on texture characteristic changes of cherry tomato during the shelf phase [J]. Science and Technology of Food Industry, 2012, 33(4): 383-386.
[2] Block Q, Patterson B, Subar A. Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence [J]. Nutrition and Cancer, 1992, 18(1): 1-29.
[3] 常培培, 梁燕, 张静, 等. 5种不同果色樱桃番茄品种果实挥发性物质及品质特性分析[J]. 食品科学, 2014, 35(22): 215-221.
Chang Peipei, Liang Yan, Zhang Jing, et al. Volatile components and quality characteristics of cherry tomato from five color varieties [J]. Food Science, 2014, 35(22): 215-221.
[4] 张文婷, 赵武奇, 鲁晓翔, 等. 四种物流贮藏温度对圣女果品质的影响[J]. 食品工业科技, 2015, 36(5): 329-333.
Zhang Wenting, Zhao Wuqi, Lu Xiaoxiang, et al. Effect of 4 kinds of logistics storage temperature on the quality of cherry tomatoes [J]. Science and Technology of Food Industry, 2015, 36(5): 329-333.
[5] Xu P, Fang N, Liu N, et al. Visual recognition of cherry tomatoes in plant factory based on improved deep instance segmentation [J]. Computers and Electronics in Agriculture, 2022, 197: 106991.
[6] Xiang Y, Chen Q, Su Z, et al. Hyperspectral Imaging for cherry tomato [J]. arXiv preprint arXiv:220305199, 2022.
[7] Yuan T, Lü L, Zhang F, et al. Robust cherry tomatoes detection algorithm in greenhouse scene based on SSD [J]. Agriculture, 2020, 10(5): 160.
[8] Sun J, He X, Wu M, et al. Detection of tomato organs based on convolutional neural network under the overlap and occlusion backgrounds [J]. Machine Vision and Applications, 2020, 31: 1-13.
[9] Hsieh K W, Huang B Y, Hsiao K Z, et al. Fruit maturity and location identification of beef tomato using R—CNN and binocular imaging technology [J]. Journal of Food Measurement and Characterization, 2021, 15(6): 5170-5180.
[10] 田华, 汪金萍, 王远. 圣女果品质特征及检测技术研究进展[J]. 食品研究与开发, 2018, 39(11): 204-209.
Tian Hua, Wang Jinping, Wang Yuan. Research progress on quality detection of cherry tomatoes [J]. Food Research and Development, 2018, 39(11): 204-209.
[11] 高芳征, 汤文俊, 陈光明, 等. 基于改进YOLOv3的复杂环境下西红柿成熟果实快速识别[J]. 中国农机化学报, 2023, 44(8): 174-183.
Gao Fangzheng, Tang Wenjun, Chen Guangming, et al. Fast recognition of ripe tomato fruits in complex environment based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 174-183.
[12] 李平, 马玉琨, 李艳翠, 等. 基于迁移学习的小麦籽粒品种识别研究[J]. 中国农机化学报, 2023, 44(7): 220-228.
Li Ping, Ma Yukun, Li Yancui, et al. Study on wheat seed variety identification based transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 220-228.
[13] 王佳, 马睿, 赵威, 等. 基于微调型VGG16的登海605玉米品种鉴别方法研究[J]. 中国粮油学报, 2023(8): 229-234.
Wang Jia, Ma Rui, Zhao Wei, et al. Research on identification method of Denghai 605 maize variety based on finetuning VGG16 [J]. Journal of the Chinese Cereals and Oils Association, 2023(8): 229-234.
[15] Nainan N A, Jeevika H, Jalan R, et al. Real time face mask detection using MobileNetV2 and InceptionV3 models [C]. IEEE Mysore Sub Section International Conference (MysuruCon). IEEE, 2021: 341-345.
[16] 史册, 南新元. 改进InceptionV3与迁移学习的太阳能电池板缺陷识别[J]. 计算机工程与科学, 2023, 45(4): 646-653.
Shi Ce, Nan Xinyuan. Improved InceptionV3 and transfer learning for solar panel defect recognition [J]. Computer Engineering & Science, 2023, 45(4): 646-653.
[17] 谢虹, 姜文刚. RRA—InceptionV3结合鲁棒的稀疏表示的表情识别方法[J]. 计算机工程, 2023, 49(7): 196-203.
Xie Hong, Jiang Wengang. RRA—InceptionV3 combined robust sparse representation method for expression recognition [J]. Computer Engineering, 2023, 49(7): 196-203.
[18] 朱虎明, 李佩, 焦李成, 等. 深度神经网络并行化研究综述[J]. 计算机学报, 2018, 41(8): 1861-1881.
Zhu Huming, Li Pei, Jiao Licheng, et al. Review of parallel deep neural network [J]. Chinese Journal of Computers, 2018, 41(8): 1861-1881.
[19] 余胜, 谢莉. 基于迁移学习和卷积视觉转换器的农作物病害识别研究[J]. 中国农机化学报, 2023, 44(8): 191-197.
Yu Sheng, Xie Li. Research on plant disease identification based on transfer learning and convolutional vision transformer [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 191-197.
[20] 巨志勇, 马素萍. 改进的InceptionV3果蔬识别算法[J]. 包装工程, 2019, 40(21): 30-35.
[21] 邓志军, 田秋红. 改进Inception—v3网络的手势图像识别[J]. 计算机系统应用, 2022, 31(11): 157-166.〖JP2〗Deng Zhijun, Tian Qiuhong. Improved Inception—v3 network for gesture image recognition [J]. Computer Systems & Applications, 2022, 31(11): 157-166.
|