English

Journal of Chinese Agricultural Mechanization

Journal of Chinese Agricultural Mechanization ›› 2025, Vol. 46 ›› Issue (3): 160-167.DOI: 10.13733/j.jcam.issn.2095-5553.2025.03.024

• Vehicle and Power Engineering • Previous Articles     Next Articles

Design and stability analysis of general-purpose chassis for Venlo greenhouse robots

Shi Guoying1, 2, Ni Zhiyong3, Zhang Guanshan1, 2, Tian Subo4, Lou Wei1, Li Tianhua1, 2   

  1. (1. College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai'an, 271018, China;
    2. Shandong Agricultural Equipment Intelligent Engineering Laboratory, Tai'an, 271018, China;
    3. College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, 300000, China;
    4. Shandong Shouguang Vegetable Industry Grop Co., Ltd., Weifang, 262700, China)
  • Online:2025-03-15 Published:2025-03-13

 Venlo型温室机器人通用底盘设计与稳定性分析

施国英1, 2,倪志永3,张观山1, 2,田素波4,娄伟1,李天华1, 2   

  1. (1. 山东农业大学机械与电子工程学院,山东泰安,271018; 2. 山东省农业装备智能化工程实验室,山东泰安,271018; 3. 天津科技大学机械工程学院,天津市,300000; 4. 山东省寿光蔬菜产业集团有限公司,山东潍坊,262700)
  • 基金资助:
    山东省重点研发计划(竞争性创新平台)项目(2024CXPT047);山东省蔬菜产业技术体系(SDAIT—05—12)

Abstract:

To improve the poor general-purpose compatibility, precision issues in straight lines and turning movements due to uneven ground, and low track switching efficiency in Venlo greenhouse robots used for harvesting, transportation and spraying, a universal chassis for dualmode road and track purposes is proposed. The chassis employs differential drive on coaxial central driving wheels to enable zeroradius turns and incorporates shock absorbers to improve the grip of the driving wheels and reduce the requirements for ground flatness. Based on theoretical analysis and dynamics simulation, the stability of in-place turning is studied, and the steering stability is reflected by the deviation of the chassis and the track centerlines after turning. The Box—Behnken central composite design is adopted, with driving wheel angular velocity, angular acceleration, static friction coefficient, and eccentricity as the test factors, and the offset between the two centerlines and track alignment time as the evaluation index. A four-factor and three-level orthogonal stability test is conducted. Through Design—Expert 10.0.1 data analysis software, the regression model of each test factor and evaluation index is established to analyze the effects of each test factor on the evaluation index and to optimize the test parameters. The results show that the optimal working parameters for chassis steering alignment with the track are a driving wheel angular velocity of 1.3 rad/s, angular acceleration of 0.9 rad/s2, static friction coefficient of 0.8, and eccentricity of 0 mm, achieving a centerline offset of 7.586 mm and a steering time of 4.497 s. The centerline offset in the greenhouse field test is 7.46 mm, and the steering time is   4.38 s, with relative errors from the predicted values below 5%. This research can provide references for the design and optimization of the chassis for Venlo greenhouse robots.

Key words: Venlo greenhouse, robot chassis, steering stability, stability test, parameter optimization, orthogonal test

摘要:

针对Venlo型温室采摘、运输、喷雾等机器人底盘通用性差、地面平整度影响走直与转向精度、路轨切换效率低等问题,设计一种机器人用路轨两用通用底盘。通过底盘中间同轴线驱动轮的差速驱动,实现零半径转弯;利用减震装置,提高驱动轮的抓地性,降低对地面平整度的要求。基于理论分析及动力学仿真对底盘原地转向时的稳定性进行研究,通过转向后底盘与轨道中心线的偏移量反映转向稳定性。运用Box—Behnken中心组合试验方法,以驱动轮角速度、角加速度、静摩擦系数、偏心距作为试验因素,以两中心线的偏移量和转向对轨时间为评价指标,进行四因素三水平稳定性正交试验。通过Design—Expert 10.0.1数据分析软件,建立各试验因素与评价指标的回归模型,分析各因素对评价指标的影响程度,并对试验参数进行优化。结果表明,底盘转向对轨的最优工作参数:驱动轮角速度、角加速度分别为1.3 rad/s、0.9 rad/s2,静摩擦系数为0.8,偏心距为0 mm,此时两中心线的偏移量为7.586 mm,转向对轨时间为4.497 s。温室现场试验的两中心线偏移量为7.46 mm,转向对轨时间为4.38 s,与模型预测值的相对误差均小于5%。为Venlo型温室机器人底盘的设计与优化提供参考。

关键词: Venlo型温室, 机器人底盘, 转向稳定性, 稳定性试验, 参数优化, 正交试验

CLC Number: