[1] Neethirajan S, Jayas D S, White N D G. Detection of sprouted wheat kernels using soft Xray image analysis [J]. Journal of Food Engineering, 2007, 81(3): 509-513.
[2] 苏忆楠. 基于机器视觉和高光谱图像技术的粮食水分检测及杂质与不完善粒识别方法研究[D]. 杭州: 浙江大学, 2011.
Su Yinan. Research on grain water content detection and impurities recognition method based on machine vision and hyperspectral imaging technique [D]. Hangzhou: Zhejiang University, 2011.
[3] Singh C B, Jayas D S, Paliwal J, et al. Identification of insectdamaged wheat kernels using shortwave nearinfrared hyperspectral and digital colour imaging [J]. Computers and Electronics in Agriculture, 2010, 73(2): 118-125.
[4] 刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1): 223-229.
Liu Huan, Wang Yaqian, Wang Xiaoming, et al. Study on detection method of wheat unsound kernel based on nearinfrared hyperspectral imaging technology [J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 223-229.
[5] 樊超, 夏旭, 石小凤, 等. 基于图像处理的小麦品种分类研究[J]. 河南工业大学学报(自然科学版), 2011, 32(5): 74-78.
Fan Chao, Xia Xu, Shi Xiaofeng, et al. Wheat variety classification based on image processing [J]. Journal of Henan University of Technology (Natural Science Edition), 2011, 32(5): 74-78.
[6] 何红霞. 基于机器视觉的小麦种子品种分类模型研究[D]. 合肥: 安徽农业大学, 2018.
He Hongxia. Study on classification model of wheat seed varieties based on machine vision [J]. Hefei: Anhui Agricultural University, 2018.
[7] 孟惜. 基于图像处理的小麦籽粒饱满度检测及品种识别[D]. 保定: 河北农业大学, 2017.
Meng Xi. Detection of wheat grain saturation and identification of varieties based on image processing [D]. Baoding: Heibei Agricultural University, 2017.
[8] 刘光宗. 小麦含水率、容重、杂余数字化检测方法研究[D]. 合肥: 安徽农业大学, 2020.
Liu Guangzong. Study on digital detection method of wheat moisture content, test weight and miscellaneous [D]. Hefei: Anhui Agricultural University, 2020.
[9] 陈进, 韩梦娜, 练毅, 等. 基于UNet模型的含杂水稻籽粒图像分割[J]. 农业工程学报, 2020, 36(10): 174-180.
Chen Jin, Han Mengna, Lian Yi, et al. Segmentation of impurity rice grain images based on UNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 174-180.
[10] 马志艳, 张徐康, 杨光友. 基于改进Mask RCNN的水稻茎秆杂质分割方法研究[J]. 中国农机化学报, 2021, 42(6): 145-150.
Ma Zhiyan, Zhang Xukang, Yang Guangyou. Research on segmentation method of rice stem impurities based on improved Mask RCNN [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 145-150.
[11] Sa I, Ge Z, Dayoub F, et al. Deepfruits: A fruit detection system using deep neural networks [J]. Sensors, 2016, 16(8): 1222.
[12] 陈进, 张帅, 李耀明, 等. 联合收获机水稻破碎籽粒及杂质在线识别方法[J]. 中国农机化学报, 2021, 42(6): 137-144.
Chen Jin, Zhang Shuai, Li Yaoming, et al. Research on online identification system of rice broken impurities in combine harvester [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 137-144.
[13] 张思雨, 张秋菊, 李可. 采用机器视觉与自适应卷积神经网络检测花生仁品质[J]. 农业工程学报, 2020, 36(4): 269-277.
Zhang Siyu, Zhang Qiuju, Li Ke. Detection of peanut kernel quality based on machine vision and adaptive convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 269-277.
[14] Rong D, Wang H, Xie L, et al. Impurity detection of juglans using deep learning and machine vision [J]. Computers and Electronics in Agriculture, 2020, 178: 105764.
[15] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[16] 刘小刚, 范诚, 李加念, 等. 基于卷积神经网络的草莓识别方法[J]. 农业机械学报, 2020, 51(2): 237-244.
Liu Xiaogang, Fan Cheng, Li Jianian, et al. Identification method of strawberry based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 237-244.
[17] 傅隆生, 冯亚利, Elkamil Tola, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211.
Fu Longsheng, Feng Yali, Elkamil Tola, et al. Image recognition method of multicluster kiwifruit in field based on convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 205-211.
[18] 张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215.
Zhang Bo, Zhang Miaohui, Chen Yunzhong. Crop pest identification based on spatial pyramid pooling and deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 209-215.
[19] Zhang Z, Liu H, Meng Z, et al. Deep learningbased automatic recognition network of agricultural machinery images [J]. Computers and Electronics in Agriculture, 2019, 166: 104978.
[20] 祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J]. 农业机械学报, 2020, 51(5): 36-42.
Zhu Shiping, Zhuo Jiaxin, Huang Hua, et al. Wheat grain integrity image detection system based on CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 36-42.
[21] 曹婷翠, 何小海, 董德良, 等. 基于CNN深度模型的小麦不完善粒识别[J]. 现代计算机(专业版), 2017(36): 9-14.
Cao Tingcui, He Xiaohai, Dong Deliang, et al. Identification of unsound kernels in wheat based on CNN deep model [J]. Modern Computer (Professional Edition), 2017(36): 9-14.
[22] 张博. 基于深度学习的小麦外观品质机器视觉检测研究[D].咸阳: 西北农林科技大学, 2019.
Zhang Bo. Machine vision inseption of wheat apprearance quality based on deep learning [D]. Xianyang: Northwest A & F University, 2019.
[23] 宋怀波, 王云飞, 段援朝, 等. 基于YOLO v5-MDC的重度粘连小麦籽粒检测方法[J]. 农业机械学报, 2022, 53(4): 245-253.
Song Huaibo, Wang Yunfei, Duan Yuanchao, et al. Detection method of severe adhesive wheat grain based on YOLO v5-MDC model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 245-253.
[24] Singh A, Arora M. CNN based detection of healthy and unhealthy wheat crop [C]. 2020 International Conference on Smart Electronics and Communication (ICOSEC). IEEE, 2020: 121-125.
[25] 武威. 基于机器视觉技术的稻麦籽粒外观品质评测研究[D]. 扬州: 扬州大学, 2021.
Wei Wu. Research on appearance quality evaluation of rice and wheat grains based on machine vision technology [D]. Yangzhou: Yangzhou University, 2021.
[26] Zhang X, Qiao Y, Meng F, et al. Identification of maize leaf diseases using improved deep convolutional neural networks [J]. IEEE Access, 2018, 6: 30370-30377.
[27] Tsai C M. Adaptive local powerlaw transformation for color image enhancement [J]. Applied Mathematics & Information Sciences, 2013, 7(5): 2019.
[28] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [J]. Springer, Cham, 2018.
[29] Ashiquzzaman A, Tushar A K, Dutta S, et al. An efficient method for improving classification accuracy of handwritten Bangla compound characters using DCNN with dropout and ELU [C]. 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE, 2017: 147-152.
[30] Hripcsak G, Rothschild A S. Technical brief: agreement, the FMeasure, and reliability in information retrieval [J]. Hripcsak, Rothschilsd, Agreement in Information Retrieval, 2005, 12(3): 296-298.
[31] Selvaraju R R, Cogswell M, Das A, et al. Gradcam: Visual explanations from deep networks via gradientbased localization [C]. Proceedings of the IEEE International Conference on Computer Vision. 2017: 618-626.
|