[1] 胡肄农. 智慧奶业关键技术与发展建议[J]. 中国畜牧杂志, 2023, 59(4): 318-322.
[2] 张中锋, 石林雄, 闫典明, 等. 甘肃省小型养殖场畜禽粪污机械化清理现状与对策建议[J]. 中国农机化学报, 2020, 41(6): 56-63.
Zhang Zhongfeng, Shi Linxiong, Yan Dianming, et al. Current situation and countermeasures of mechanized cleaning of livestock and poultry waste in small farms in Gansu Province [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6): 56-63.
[3] 龙沈飞, 贺腾飞, 张校军, 等. 猪的智能化饲养管理和环境控制研究进展[J]. 中国畜牧杂志, 2023, 59(5): 34-39.
Long Shenfei, He Tengfei, Zhang Xiaojun, et al. Research progress on intelligent feeding management and environmental control of pigs [J]. Chinese Journal of Animal Science, 2023, 59(5): 34-39.
[4] 张仰猛, 马亚军, 张翠英, 等. 山东省畜牧养殖机械化生产现状分析及对策研究[J]. 中国农机化学报, 2021, 42(7): 177-181, 201.
Zhang Yangmeng, Ma Yajun, Zhang Cuiying, et al. Current situation analysis and countermeasures study of mechanized production of animal husbandry in Shandong Province [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 177-181, 201.
[5] Sisinni E, Han S. Industrial internet of things: Challenges, opportunities, and directions [J]. IEEE Transactions on Industrial Informatics, 2018, 14(11): 4724-4734.
[6] Griveves M. Product lifecycle management: The new paradigm for enterprise [J]. International Joural of Product Development, 2005, 2(1-2): 71-84.
[7] 陶飞, 张辰源, 张贺, 等. 未来装备探索: 数字孪生装备[J]. 计算机集成制造系统, 2022, 28(1): 1-16.
Tao Fei, Zhang Chenyuan, Zhang He, et al. Future equipment exploration: Digital twin equipment [J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 1-16.
[8] 孙靖文, 白斌. 数字孪生渔场构建方法与应用[J]. 信息技术与标准化, 2021(11): 31-33.
Sun Jingwen, Bai Bin. Construction method and application of digital twin fishery farm [J]. Information Technology & Standardization, 2021(11): 31-33.
[9] 张古泰. 基于Unity3D的虚拟养殖系统的设计与实现[D]. 长沙: 湖南工业大学, 2018.
Zhang Gutai. The design and implementation of virtual farming system based on Unity3D [D]. Changsha: Hunan University of Technology, 2018.
[10] Du L, Yang C, Dominy R, et al. Computational fluid dynamics aided investigation and optimization of a tunnelventilated poultry house in China [J]. Computers and Electronics in Agriculture, 2019, 159: 1-15.
[11] Neethirajan S, Kemp B. Digital twins in livestock farming [J]. Animals, 2021, 11(4): 1008.
[12] Slob N, Hurst W, Zedde R, et al. Virtual realitybased digital twins for greenhouses: A focus on human interaction [J]. Computers and Electronics in Agriculture, 2023, 208: 107815.
[13] Neethirajan S. Affective state recognition in livestock—Artificial intelligence approaches [J]. Animals, 2022, 12: 759.
[14] Flynn K J, Torres R, Irigoien X, et al. Plankton digital twins—A new research tool [J]. Journal of Plankton Research, 2022, 44(6): 805-813.
[15] Nita M D. Testing forestry digital twinning workflow based on mobile lidar scanner and AI platform [J]. Forests, 2021, 12(11): 1576.
[16] 韩利峰, 李嘉曾, 黄文博, 等. 基于Nodejs实现Web端实时在线监测[J]. 仪器仪表用户, 2018, 25(10): 80-83.
Han Lifeng, Li Jiazeng, Huang Wenbo, et al. A widely coverage system design for laboratory safety monitoring uses [J]. Instrumentation, 2018, 25(10): 80-83.
[17] 黄祖广, 潘辉, 薛瑞娟, 等. 基于数字孪生的数控设备互联互通及可视化[J]. 制造技术与机床, 2021(1): 128-132.
Huang Zuguang, Pan Hui, Xue Ruijuan, et al. Interconnection and visualization of CNC equipment based on digital twin [J]. Manufacturing Technology & Machine Tool, 2021(1): 128-132.
[18] 赵海鹏, 周杨, 卞和方. 基于Three.js的三维虚拟校园系统设计与实现[J]. 兰州交通大学学报, 2019, 38(3): 85-94.
Zhao Haipeng, Zhou Yang, Bian Hefang. Design and implementation of threedimensional virtual campus system based on Three.js [J]. Journal of Lanzhou Jiaotong University, 2019, 38(3): 85-94.
[19] 杨伟新, 樊小伟, 孙荣富, 等. 数字孪生驱动的风电机组三维可视化监控与故障预警方法[J]. 弹箭与制导学报, 2023, 43(2): 94-102.
Yang Weixin, Fan Xiaowei, Sun Rongfu, et al. Digital twindriven 3D visualization monitoring and fault warning for wind turbine [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(2): 94-102.
[20] 陈江, 吴海波, 张艺潇, 等. 面向数字孪生的车间运行三维实时监控系统[J]. 现代制造工程, 2023(4): 21-32.
Chen Jiang, Wu Haibo, Zhang Yixiao, et al. 3D realtime monitoring system of workshop operation for digital twinning [J]. Modern Manufacturing Engineering, 2023(4): 21-32.
[21] 周一波, 唐啸风, 张俊, 等. 乡村振兴背景下南京都市特色农业机械化发展对策[J]. 中国农机化学报, 2022, 43(11): 216-223.
Zhou Yibo, Tang Xiaofeng, Zhang Jun, et al. Countermeasures of mechanization in the development of urban characteristic agriculture in Nanjing under the background of rural revitalization [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 216-223.
[22] Tekinerdogan B, Verdouw C. Systems architecture design pattern catalog for developing digital twins [J]. Sensors, 2020, 20(18): 5103.
[23] Nasirahmadi A, Hensel O. Toward the next generation of digitalization in agriculture based on digital twin paradigm [J]. Sensors, 2022, 22(2): 498.
[24] Verdouw C, Tekinerdogan B, Beulens A, et al. Digital twins in smart farming [J]. Agricultural Systems, 2021, 189: 103046.
[25] Smetana S, Aganovic K, Heinz V. Food supply chains as cyberphysical systems: A path for more sustainable personalizd nutrition [J]. Food Engineering Reviews, 2021, 13: 92-103.
[26] Collins L M, Smith L M. Review: smart agrisystems for the pig industry [J]. Animal, 2022, 22(16): 100518.
[27] Raba D, Tordecilla R D, Copado P, et al. A digital twin for decision making on livestock feeding [J]. Informs, 52(3): 267-282.
[28] 杨世春, 李强伟, 周思达, 等. 面向智能化管理的数字孪生电池构建方法[J]. 北京航空航天大学学报, 2022, 48(9): 1734-1744.
Yang Shichun, Li Qiangwei, Zhou Sida, et al. Construction of digital twin model of lithiumion battery for intelligent management [J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1734-1744.
[29] 高士根, 周敏, 郑伟, 等. 基于数字孪生的高端装备智能运维研究现状与展望[J]. 计算机集成制造系统, 2022, 28(7): 1953-1965.
Gao Shigen, Zhou Min, Zheng Wei, et al. Intelligent operation and maintenance for advanced equipment based on digital twin: Challenges and future [J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 1953-1965.
[30] 葛敏敏. 基于物联网的生猪养殖环境监控及氨气预测模型研究和应用[D]. 镇江: 江苏大学, 2022.
Ge Minmin. Research and application of environmental monitoring and ammonia prediction model for pig breeding based on internet of things [D]. Zhenjiang: Jiangsu University, 2022.
[31] 杨亮, 刘春红, 郭昱辰, 等. 基于EMDLSTM的猪舍氨气浓度预测研究[J]. 农业机械学报, 2019, 50(S1): 353-360.
Yang Liang, Liu Chunhong, Guo Yuchen, et al. Prediction of ammonia concentration in fattening piggery based on EMDLSTM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 353-360.
(上接第143页)
[1] Zhu Sihong. Development trend of tire tractor in Germany [J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(1): 111-114.
[2] Renius K T. Fundamentals of tractor design [M]. Cham, Switzerland: Springer Nature Switzerland AG, 2020.
[3] Li B, Sun D, Hu M, et al. Automatic starting control of tractor with a novel powershift transmission [J]. Mechanism and Machine Theory, 2019, 131: 75-91.
[4] Geske D M. Bigger, smarter tractors from Fendt [J]. Diesel Progress North American Edition, 2004, 70(8): 68-70.
[5] 陈万强, 曹允莲, 倪向东, 等. 采棉机液压功率分流无级变速箱传动特性研究[J]. 中国农机化学报, 2020, 41(10): 118-124.
Chen Wanqiang, Cao Yunlian, Ni Xiangdong, et al. Study on transmission characteristics of hydrostatic power split CVT of cotton picker [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10): 118-124.
[6] I·nce E, Güler M A. On the advantages of the new powersplit infinitely variable transmission over conventional mechanical transmissions based on fuel consumption analysis [J]. Journal of Cleaner Production, 2020, 244: 118795.
[7] Renius K T, Resch R. Continuously variable tractor transmissions[C]. 2005 Agriculture Equipment Technology Conference. Louisville, Kentucky, USA: ASME, 2005: 1-37.
[8] 张明柱, 周志立, 徐立友, 等. 农业拖拉机用多段液压机械无级变速器设计[J]. 农业工程学报, 2003, 19(6): 118-121.
Zhang Mingzhu, Zhou Zhili, Xu Liyou, et al. Design of a multirange hydrostatic mechanical transmission for farm tractors [J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(6): 118-121.
[9] 张海军, 刘峰, 朱思洪, 等. 大马力拖拉机新型液压功率分流无级变速器优化设计[J]. 南京农业大学学报, 2016, 39(1): 156-165.
Zhang Haijun, Liu Feng, Zhu Sihong, et al. The optimization design of a new type of hydraulic powersplit continuously variable transmission for highpower tractors [J]. Journal of Nanjing Agricultural University, 2016, 39(1): 156-165.
[10] 陈万强. 拖拉机HMCVT无级变速箱的换段系统设计与控制[D]. 泰安: 山东农业大学, 2021.Chen Wanqiang. Design and control of range shifting system for tractor hydromechanical continuously variable transmission[D]. Taian: Shandong Agricultural University, 2021.
[11] 曹允莲. 串联式拖拉机液压功率分流无级变速箱的设计[D]. 泰安: 山东农业大学, 2021.Cao Yunlian. Design of hydrostatic power split continuously variable transmission for series tractor[D]. Taian: Shandong Agricultural University, 2021.
|