[1] 徐岩, 李晓振, 吴作宏, 等. 基于残差注意力网络的马铃薯叶部病害识别[J]. 山东科技大学学报(自然科学版), 2021, 40(2): 76-83.
Xu Yan, Li Xiaozhen, Wu Zuohong, et al. Potato leaf disease recognition via residual attention network [J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(2): 76-83.
[2] 蒲秀夫, 宁芊, 雷印杰, 等. 基于二值化卷积神经网络的农业病虫害识别[J]. 中国农机化学报, 2020, 41(2): 177-182.
Pu Xiufu, Ning Qian, Lei Yinjie, et al. Identification of agricultural plant diseases based on binarized convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 177-182.
[3] 赵建敏, 芦建文. 基于字典学习的马铃薯叶片病害图像识别算法[J]. 河南农业科学, 2018, 47(4): 154-160.Zhao Jianmin, Lu Jianwen. Identification algorithm of potato diseases on leaves using dictionary learning theory [J]. Journal of Henan Agricultural Sciences, 2018, 47(4): 154-160.
[4] 姜敏, 沈一鸣, 张敬尧, 等. 基于深度学习的水稻病虫害诊断方法研究[J]. 洛阳理工学院学报(自然科学版), 2019, 29(4): 78-83.
Jiang Min, Shen Yiming, Zhang Jingyao, et al. Research on rice diseases and pests diagnosis based on deep learning [J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2019, 29(4): 78-83.
[5] 党满意, 孟庆魁, 谷芳, 等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报, 2020, 36(2): 193-200.
Dang Manyi, Meng Qingkui, Gu Fang, et al. Rapid recognition of potato late blight based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 193-200.
[6] 于洪涛, 袁明新, 王琪, 等. 基于VGG-F动态学习模型的苹果病虫害识别[J]. 科学技术与工程, 2019, 19(32): 249-253.Yu Hongtao, Yuan Mingxin, Wang Qi, et al. Recognition of apple pests and diseases based on VGG-F dynamic leaming model [J]. Science Technology and Engineering, 2019, 19(32): 249-253.
[7] 牛冲, 牛昱光, 李寒, 等. 基于图像灰度直方图特征的草莓病虫害识别[J]. 江苏农业科学, 2017, 45(4): 169-172.Niu Chong, Niu Yuguang, Li Han, et al. Strawberry disease recognition based on image gray histogram feature [J]. Jiangsu Agricultural Science, 2017, 45(4): 169-172.
[8] 王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报, 2021, 42(11): 122-129.
Wang Linbai, Zhang Bo, Yao Jingfa, et al. Potato leaf disease recognition and potato leaf disease spot detection based on Convolutional Neural Network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129.
[9] 赵晋陵, 詹媛媛, 王娟, 等. 基于SEUNet的冬小麦种植区域提取方法[J]. 农业机械学报, 2022, 53(9): 189-196.
Zhao Jinling, Zhan Yuanyuan, Wang Juan, et al. SEUNetBased extraction of winter wheat planting areas [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 189-196.
[10] 张为, 李璞. 基于注意力机制的人脸表情识别网络[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(7): 706-713.
Zhang Wei, Li Pu. Facial expression recognition network based on attention mechanism [J]. Journal of Tianjin University (Science and Technology), 2022, 55(7): 706-713.
[11] 黄海松, 陈星燃, 韩正功, 等. 基于多尺度注意力机制和知识蒸馏的茶叶嫩芽分级方法[J]. 农业机械学报, 2022, 53(9): 399-407, 458.
Huang Haisong, Chen Xingran, Han Zhenggong, et al. Tea buds grading method based on multiscale attention mechanism and knowledge distillation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 399-407, 458.
[12] 殷献博, 邓小玲, 兰玉彬, 等. 基于改进YOLOX-Nano算法的柑橘梢期长势智能识别[J]. 华南农业大学学报, 2023, 44(1): 142-150.
Yin Xianbo, Deng Xiaoling, Lan Yubin, et al. Intelligent recognition of citrus shoot growth based on improved YOLOXNano algorithm [J]. Journal of South China Agricultural University, 2023, 44(1): 142-150.
[13] 于雪莹, 高继勇, 王首程, 等. 基于生成对抗网络和混合注意力机制残差网络的苹果病害识别[J]. 中国农机化学报, 2022, 43(6): 166-174.
Yu Xueying, Gao Jiyong, Wang Shoucheng, et al. Apple disease recognition based on Wasserstein generative adversarial networks and hybrid attention mechanism residual network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 166-174.
[14] 高荣华, 白强, 王荣, 等. 改进注意力机制的多叉树网络多作物早期病害识别方法[J]. 计算机科学, 2022, 49(S1): 363-369.
Gao Ronghua, Bai Qiang, Wang Rong, et al. Multitree network multicrop early disease recognition method based on improved attention mechanism [J]. Computer Science, 2022, 49(S1): 363-369
[15] 杨玥, 冯涛, 梁虹, 等. 融合交叉注意力机制的图像任意风格迁移[J]. 计算机科学, 2022, 49(S1): 345-352, 396.
Yang Yue, Feng Tao, Liang Hong,et al. Image arbitrary style transfer via crisscross attention [J]. Computer Science, 2022, 49(S1): 345-352, 396.
[16] 高雨亮, 徐向英, 章永龙, 等. 融合分组注意力机制的水稻病虫害图像识别算法[J]. 扬州大学学报(自然科学版), 2021, 24(6): 53-57.
Gao Yuliang, Xu Xiangying, Zhang Yonglong, et al. Image recognition algorithm of rice diseases and insect pests based on shuffle attention mechanism [J]. Journal of Yangzhou University (Natural Science Edition), 2021, 24(6): 53-57.
[17] 毛腾跃, 宋阳, 郑禄. 基于多尺度与混合注意力机制的苹果目标检测[J]. 中南民族大学学报(自然科学版), 2022, 41(2): 235-242.
Mao Tengyue, Song Yang, Zheng Lu. Apple target detection based on multiscale and hybrid attention mechanism [J].Journal of SouthCentral Minzu University (Natural Science Edition), 2022, 41(2): 235-242.
[18] 骆润玫, 殷惠莉, 刘伟康, 等. 基于YOLOv5-C的广佛手病虫害识别[J]. 华南农业大学学报, 2023, 44(1): 151-160.
Luo Runmei, Yin Huili, Liu Weikang, et al. Identification of bergamot pests and diseases in complex background using YOLOv5-C algorithm [J]. Journal of South China Agricultural University, 2023, 44(1): 151-160.
[19] Leng Z, Tan M, Liu C, et al. PolyLoss: A polynomial expansion perspective of classification loss functions [C]. International Conference on Learning Representations (ICLR), 2022.
[20] Radosavovic I, Kosaraju R P, Girshick R, et al. Designing network design spaces [C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
|