[1] Barbedo J. Factors influencing the use of deep learning for plant disease recognition [J]. Biosystems Engineering, 2018, 172: 84-91.
[2] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18.
Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18.
[3] Mohanty S P, Hughes D P, Salathe M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7.
[4] Lü M, Zhou G, He M, et al. Maize leaf disease identification based on feature enhancement and DMSRobust Alexnet [J]. IEEE Access, 2020, 8: 57952-57966.
[5] Pandian J A, Geetharamani G, Annette B. Data augmentation on plant leaf disease image dataset using image manipulation and deep learning techniques [C]. 2019 IEEE 9th International Conference on Advanced Computing (IACC). IEEE, 2019: 199-204.
[6] Zeng Q, Ma X, Cheng B, et al. Gansbased data augmentation for citrus disease severity detection using deep learning [J]. IEEE Access, 2020, 8: 172882-172891.
[7] 项小东, 翟蔚, 黄言态, 等. 基于XceptionCEMs神经网络的植物病害识别[J]. 中国农机化学报, 2021, 42(8): 177-186.
Xiang Xiaodong, Zhai Wei, Huang Yantai, et al. Plant disease recognition based on XceptionCEMs neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 177-186.
[8] 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247.
Wang Meihua, Wu Zhenxin, Zhou Zuguang. Finegrained identification of crop pests and diseases based on improved CBAM via attention [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 239-247.
[9] 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317.
Jia Shaopeng, Gao Hongju, Hang Xiao. Research progress on image recognition technology of crop pests and diseases based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 313-317.
[10] Karras T, Aila T, Laine S, et al. Progressive growing of gans for improved quality, stability, and variation [J]. arXiv Preprint arXiv: 1710.10196, 2017.
[11] Creswell A, White T, Dumoulin V, et al. Generative adversarial networks: An overview [J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
[12] 金耀, 徐阳, 韩飞杨, 等. 基于深度学习语义分割的桥梁病害图像像素级识别方法[J]. 公路交通科技(应用技术版), 2020, 16(1): 183-188.
Jin Yao, Xu Yang, Han Feiyang, et al. Pixellevel recognition method for bridge disease images based on deep learning semantic segmentation [J]. Journal of Highway and Transportation Research and Development (Application Technology Edition), 2020, 16(1): 183-188.
[13] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
|