[1] Ryan M R, Crews T E, Culman S W, et al. Managing for multifunctionality in perennial grain crops [J]. BioScience, 2018, 68(4): 294-304.
[2] 白雪冰, 余建树, 傅泽田, 等. 光谱成像技术在作物病害检测中的应用进展与趋势[J]. 光谱学与光谱分析, 2020, 40(2): 350-355.
Bai Xuebing, Yu Jianshu, Fu Zetian, et al. Application of spectral imaging technology for detecting crop disease information:A review [J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 350-355.
[3] 竞霞. 基于多源多时相数据棉花黄萎病遥感监测研究[D]. 北京: 北京师范大学, 2009.
Jing Xia. Remote sensing monitoring of Verticillium wilt in cotton based on multisource and multitemporal data [D]. Beijing: Beijing Normal University, 2009.
[4] Bock C H, Poole G H, Parker P E, et al. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging [J]. Critical Reviews in Plant Sciences, 2010, 29(2): 59-107.
[5] 王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报, 2016, 47(9): 266-277.
Wang Xiangyu, Wen Haojie, Li Xinxing, et al. Research progress analysis of mainly agricultural diseases detection and early warning technologies [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 266-277.
[6] 阚春月, 王守法, 杨翠云. 植物种传病害检测技术的研究进展[J]. 安徽农业科学, 2010, 38(15): 7956-7959.
Kan Chunyue, Wang Shoufa, Yang Cuiyun. Progress of detecting plant seedborne diseases [J]. Journal of Anhui Agricultural Sciences, 2010, 38(15): 7956-7959.
[7] Bock C H, Poole G H, Parker P E, et al. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging [J]. Critical Reviews in Plant Sciences, 2010, 29(2): 59-107.
[8] Zhang N, Yang G, Pan Y, et al. A review of advanced technologies and development for hyperspectralbased plant disease detection in the past three decades [J]. Remote Sensing, 2020, 12(19): 3188.
[9] Shahrour W G, Shatnawi M A, Abubaker S, et al. Identification of Phytophthora infestans from infected potato and tomato plants using molecular techniques [J].Journal of Food, Agriculture & Environment, 2013, 11(3&4): 1216-1221.
[10] 彭好文, 黎起秦, 蒙姣荣. PCR技术在植物病害研究中的应用[J]. 广西农业科学, 2006(6): 682-685.
Peng Haowen, Li Qiqin, Meng Jiaorong. Application of PCR technology in research of plant disease [J]. Guangxi Agricultural Sciences, 2006(6): 682-685.
[11] Parida M, Sannarangaiah S, Dash P K, et al.Loop mediated isothermal amplification (LAMP): A new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases [J]. Reviews in Medical Virology, 2008, 18(6): 407-421.
[12] 彭丹丹, 张源明, 舒灿伟, 等. 植物病原真菌分子检测技术的研究进展[J]. 基因组学与应用生物学, 2017, 36(5): 2015-2022.
Peng Dandan, Zhang Yuanming, Shu Canwei, et al. Research progress on the molecular detection techniques of plant pathogenic fungi [J]. Genomics and Applied Biology, 2017, 36(5): 2015-2022.
[13] Khan M, Li B, Jiang Y, et al. Evaluation of different PCRbased assays and LAMP method for rapid detection of Phytophthora infestans by targeting the Ypt1 gene [J]. Frontiers in Microbiology, 2017, 8: 1920.
[14] 陈长卿. 大豆疫霉的分子检测及游动孢子多样性研究[D]. 咸阳: 西北农林科技大学, 2005.
Chen Changqing. Molecular detection and zoospore diversity of Phytophthora soya [D]. Xianyang: Northwest A & F University, 2005.
[15] 刘琼光. 植物病原细菌的血清学鉴定和分类[J]. 江西植保, 1995(4): 29-31.
[16] Ray M, Ray A, Dash S, et al. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors [J]. Biosensors and Bioelectronics, 2017, 87: 708-723.
[17] 王彦翔, 张艳, 杨成娅, 等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676.
Wang Yanxiang, Zhang Yan, Yang Chengya, et al. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 669-676.
[18] 洪霓, 高必达. 植物病害检疫学[M]. 北京: 科学出版社, 2005.
[19] Singh V, Sharma N, Singh S. A review of imaging techniques for plant disease detection [J]. Artificial Intelligence in Agriculture, 2020, 4: 229-242.
[20] Sai Reddy B, Neeraja S. Plant leaf disease classification and damage detection system using deep learning models [J]. Multimedia Tools and Applications, 2022, 81(17): 24021-24040.
[21] 黄木易, 王纪华, 黄文江, 等. 冬小麦条锈病的光谱特征及遥感监测[J]. 农业工程学报, 2003(6): 154-158.
Huang Muyi, Wang Jihua, Huang Wenjiang, et al. Hyperspectral character of stripe rust on winter wheat and monitoring by remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2003(6): 154-158.
[22] 张竞成, 袁琳, 王纪华, 等. 作物病虫害遥感监测研究进展[J]. 农业工程学报, 2012, 28(20): 1-11.
Zhang Jingcheng, Yuan Lin, Wang Jihua, et al. Research progress of crop diseases and pests monitoring based on remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20): 1-11.
[23] Qi W, Tian Y, Lu D, et al. Research progress of applying infrared spectroscopy technology for detection of toxic and harmful substances in food [J]. Foods, 2022, 11(7): 930.
[24] Fu X P, Ying Y B, Liu Y D, et al. Detection of pear firmness using near infrared diffuse reflectance spectroscopy [J]. Europe PMC, 2006, 26(6): 1038-1041.
[25] ElMesery H S, Mao H, Abomohra A E F. Applications of nondestructive technologies for agricultural and food products quality inspection [J]. Sensors, 2019, 19(4): 846.
[26] Wang L, Jia M, Yin D, et al. A review of remote sensing for mangrove forests: 1956-2018 [J]. Remote Sensing of Environment, 2019, 231: 111223.
[27] Qu J H, Sun D W, Cheng J H, et al. Mapping moisture contents in grass carp (Ctenopharyngodon idella) slices under different freeze drying periods by VisNIR hyperspectral imaging [J]. LWT, 2017, 75: 529-536.
[28] 李小龙, 秦丰, 赵龙莲, 等. 近红外光谱技术的小麦条锈病严重度分级识别[J]. 光谱学与光谱分析, 2015, 35(2): 367-371.
Li Xiaolong, Qin Feng, Zhao Longlian, et al. Identification and classification of disease severity of wheat stripe rust using near infrared spectroscopy technology [J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 367-371.
[29] 黄福贞. 植物感应性反应机制[J]. 生物学教学, 1999(10): 1-3.
[30] 李真. 红外热成像技术在作物病害早期检测方面的应用研究[D]. 保定: 河北农业大学, 2015.
Li Zhen. Application of infrared thermal imaging technology in early detection of crop diseases [D]. Baoding: Hebei Agricultural University, 2015.
[31] Ishimwe R, Abutaleb K, Ahmed F. Applications of thermal imaging in agriculture—A review [J]. Advances in Remote Sensing, 2014, 3(3): 128.
[32] Mahlein A K, Oerke E C, SteinerU, et al. Recent advances in sensing plant diseases for precision crop protection [J]. European Journal of Plant Pathology, 2012, 133: 197-209.
[33] ZiaKhan S, Kleb M, Merkt N, et al. Application of infrared imaging for early detection of Downy Mildew (Plasmopara viticola) in grapevine [J]. Agriculture, 2022, 12(5): 617.
[34] 郝松傲, 秦军. 热红外图像与可见光图像的配准与融合[J]. 四川测绘, 2008(3): 131-133.
Hao Songao, Qin Jun. The registration and fusion of infrared thermal image and visible light image [J]. Surveying and Mapping of Sichuan, 2008(3): 131-133.
[35] 朱文静, 陈华, 李林, 等. 基于红外热成像边缘检测算法的小麦叶锈病分级研究[J]. 农业机械学报, 2019, 50(4): 36-41, 48.
Zhu Wenjing, Chen Hua, Li Lin, et al. Grading of wheat leaf rust based on edge detection of infrared thermal imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 36-41, 48.
[36] Pineda M, Barón M, PérezBueno M L. Thermal imaging for plant stress detection and phenotyping [J]. Remote Sensing, 2020, 13(1): 68.
[37] Vadivambal R, Jayas D S. Applications of thermal imaging in agriculture and food industry: A review [J]. Food and Bioprocess Technology, 2011, 4: 186-199.
[38] 谢亚平, 陈丰农, 张竞成, 等. 基于高光谱技术的农作物常见病害监测研究[J]. 光谱学与光谱分析, 2018, 38(7): 2233-2240.
Xie Yaping, Chen Fengnong, Zhang Jingcheng, et al. Study on monitoring of common diseases of crops based on hyperspectral technology [J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2233-2240.
[39] Lowe A, Harrison N, French A P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress [J]. Plant Methods, 2017, 13(1): 80.
[40] Ma J, Sun D W, Pu H, et al. Advanced techniques for hyperspectral imaging in the food industry: Principles and recent applications [J]. Annual Review of Food Science and Technology, 2019, 10: 197-220.
[41] Yuan L, Yan P, Han W, et al. Detection of anthracnose in tea plants based on hyperspectral imaging [J]. Computers and Electronics in Agriculture, 2019, 167: 105039.
[42] Peuelas J, Filella I. Visible and nearinfrared reflectance techniques for diagnosing plant physiological status [J]. Trends in Plant Science, 1998, 3(4): 151-156.
[43] 卢东昱, 崔新图, 黄镜荣, 等. 叶绿素吸收光谱的观测[J]. 大学物理, 2006, 25(1): 50-53, 63.
Lu Dongyu, Cui Xintu, Huang Jingrong, et al. Investigation on absorption spectrum of chlorophyⅡ [J]. College Physics, 2006, 25(1): 50-53, 63.
[44] 马书英, 郭增长, 王双亭, 等. 高光谱技术监测植物病虫害方法研究进展[J]. 测绘地理信息, 2021, 46(5): 46-51.
Ma Shuying, Guo Zengzhang, Wang Shuangting, et al. Research progress in monitoring plant diseases and insect pests by hyperspectral technology [J]. Journal of Geomatics, 2021, 46(5): 46-51.
[45] 周长建, 宋佳, 向文胜. 基于人工智能的作物病害识别研究进展[J]. 植物保护学报, 2022, 49(1): 316-324.
Zhou Changjian, Song Jia, Xiang Wensheng. Research progresses in artificial intelligenceBased crop disease identification [J]. Journal of Plant Protection, 2022, 49(1): 316-324.
|