[ 1 ] 钟金城, 王会, 柴志欣, 等. 牦牛种质资源挖掘与创新利用[J]. 中国畜禽种业, 2022, 18(10): 22-29.
[ 2 ] 陈占琦. 基于卷积神经网络的牦牛个体识别方法研究[D]. 西宁: 青海大学, 2023.
Chen Zhanqi. Research on yak individual recognition method based on convolution neural networks [D]. Xining: Qinghai University, 2023.
[ 3 ] 达措, 赵启军, 高定国, 等. 基于注意力网络的长时牦牛个体识别研究[J]. 中国农机化学报, 2024, 45(1): 202-208.
Da Cuo, Zhao Qijun, Gao Dingguo, et al. Research on long‑term yak individual recognition based on attention networks [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 202-208.
[ 4 ] 曹兵海, 李俊雅, 王之盛, 等. 2022年度肉牛牦牛产业技术发展报告[J]. 中国畜牧杂志, 2023, 59(3): 330-335.
[ 5 ] 曹兵海, 李俊雅, 王之盛, 等. 2023年肉牛牦牛产业发展趋势与政策建议[J]. 中国畜牧杂志, 2023, 59(3): 323-329.
[ 6 ] 赵慧兵, 马娟, 张杰, 等. 肉牛自动化无应激动态称重系统的设计与试验[J]. 新疆农业科学, 2022, 59(7): 1795-1801.
Zhao Huibing, Ma Juan, Zhang Jie, et al. Development of automatic barrier free dynamic weighing equipment for beef cattle [J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1795-1801.
[ 7 ] 庄育锋, 胡晓瑾, 翟宇. 基于BP神经网络的微量药品动态称重系统非线性补偿[J]. 仪器仪表学报, 2014, 35(8): 1914-1920.
Zhuang Yufeng, Hu Xiaojin, Zhai Yu. Nonlinear compensation of micro scale capsule dynamic condition weighing unit based on BP neural network model [J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1914-1920.
[ 8 ] 董小宁. 基于STM32的奶牛动态称重系统研究[D]. 泰安: 山东农业大学, 2017.
Dong Xiaoning. Weigh‑in‑motion of the dairy cow based on STM32 microcontroller [D]. Tai'an: Shandong Agricultural University, 2017.
[ 9 ] 马聪, 李锋, 张建华, 等. 基于LSTM神经网络的肉牛动态称重算法研究[J]. 黑龙江畜牧兽医, 2020(20): 60-63, 157-158.
[10] 赵慧兵. 肉牛无障碍智能化称重系统的设计与试验[D]. 乌鲁木齐: 新疆农业大学, 2021.
Zhao Huibing. Design and experiment of barrier free intelligent weighing system for beef cattle [D]. Urumqi: Xinjiang Agricultural University, 2021.
[11] 胡肄农, 仇振升, 朱红宾, 等. 一种牛动态称重系统的研发[J]. 中国畜禽种业, 2023, 19(10): 51-54.
[12] 李建鑫, 郭晨霞, 杨瑞峰, 等. 基于分段包络线抑制端点效应的EMD动态称重算法[J]. 电子测量技术, 2023, 46(22): 109-115.
Li Jianxin, Guo Chenxia, Yang Ruifeng, et al. Dynamic weighing algorithm of EMD based on segmented envelope fitting endpoint effect [J]. Electronic Measurement Technology, 2023, 46 (22): 109-115.
[13] 张晋青, 张楠, 谢秀梅, 等. 成年青海公牦牛体重与体尺性状线性回归模型的构建[J]. 中国草食动物科学, 2019, 39(6): 68-70.
[14] Goodfellow I, Pouget‑Abadie J, Mirza M, et al. Generative adversarial nets [J]. Advances in Neural Information Processing Systems, 2014, 27.
[15] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332.
Wang Kunfeng, Gou Chao, Duan Yanjie, et al. Generative adversarial networks: The state of the art and beyond [J]. Acta Automatica Sinica, 2017, 43(3): 321-332.
[16] 梁俊杰, 韦舰晶, 蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14(1): 1-17.
Liang Junjie, Wei Jianjing, Jiang Zhengfeng. Generative adversarial networks GAN overview [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 1-17.
[17] Vashitz G, Shinar D, Blum Y. In‑vehicle information systems to improve traffic safety in road tunnels [J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2008, 11(1): 61-74.
[18] 李友坤. BP神经网络的研究分析及改进应用[D]. 淮南: 安徽理工大学, 2012.
Li Youkun. Analysis and improvement applications of BP neural network [D]. Huainan: Anhui University of Science and Technology, 2012.
[19] 杨青, 王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究, 2019, 36(3): 65-77.
Yang Qing, Wang Chenwei. A study on forecast of global stock indices based on deep LSTM neural network [J]. Statistical Research, 2019, 36(3): 65-77.
[20] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.
Wang Xin, Wu Ji, Liu Chao, et al. Exploring LSTM based recurrent neural network for failure time series prediction [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784.
[21] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder‑decoder for statistical machine translation [J]. Computer Science, 2014.
[22] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6, 26.
Yang Li, Wu Yuxi, Wang Junli, et al. Research on recurrent neural network [J]. Journal of Computer Applications, 2018, 38(S2): 1-6, 26.
[23] 谷丽琼, 吴运杰, 逄金辉. 基于Attention机制的GRU股票预测模型[J]. 系统工程, 2020, 38(5): 134-140.
Gu Liqiong, Wu Yunjie, Pang Jinhui. An attention‑based GRU model for stock predicting [J]. Systems Engineering, 2020, 38(5): 134-140.
[24] 刘洋. 基于GRU神经网络的时间序列预测研究[D]. 成都: 成都理工大学, 2017.
Liu Yang. The research of time series prediction based on GRU neural network [D]. Chengdu: Chengdu University of Technology, 2017.
[25] 张泽, 姚育成, 鲍迪, 等. 一种基于STM32的ADC数据采集系统设计[J]. 现代电子技术, 2023, 46(10): 47-53.
Zhang Ze, Yao Yucheng, Bao Di, et al. Design of ADC data acquisition system based on STM32 [J]. Modern Electronics Technique, 2023, 46(10): 47-53.
|