[1] 刘建军. 南疆地区水资源保障问题和对策分析[J]. 水资源开发与管理, 2022, 8(8): 8-11, 5.
Liu Jianjun. Problems and countermeasures of water resources guarantee in Southern Xinjiang [J]. Water Resources Development and Management, 2022, 8(8):8-11, 5.
[2] 杨文忠. 农业节水灌溉技术现状与发展趋势探讨[J]. 农业科技与信息, 2021(4): 92, 97.
[3] 潘晓燕. 物联网技术的农业智能灌溉系统设计与应用研究[J]. 科学技术创新, 2021(26): 176-177.
[4] 陈艳丽, 谢芳. 基于ZigBee的农田智能节水灌溉系统的设计[J]. 中国农机化学报, 2017, 38(2): 81-83, 129.
Chen Yanli, Xie Fang. Design of intelligent watersaving farmland irrigation system based on ZigBee [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(2): 81-83, 129.
[5] 程章翔, 辛元芳, 姚勇, 等. 基于NBIoT的智能灌溉系统设计[J]. 集成电路应用, 2021, 38(6): 44-45.Cheng Zhangxiang, Xin Yuanfang, Yao Yong, et al. Design of intelligent irrigation system based on NBIoT [J]. Integrated Circuit Applications, 2021, 38(6): 44-45.
[6] 蓝宇, 黄中舟, 朱彦博, 等. 基于STM32和树莓派智能灌溉系统的设计与实现[J]. 物联网技术, 2021, 11(7): 114-117.
[7] 张吉圭. 基于STC15W单片机农田智能灌溉无线监控系统的实现[J]. 智慧农业导刊, 2021, 1(5): 33-35.Zhang Jigui. Realization of intelligent farmland irrigation wireless monitoring system based on STC15W single chip microcomputer [J] Journal of Smart Agriculture, 2021, 1(5): 33-35.
[8] 赵苏徽, 陈晓. 基于树莓派和云平台的智能灌溉系统[J]. 计算机系统应用, 2022, 31(4): 123-129.
Zhao Suhui, Chen Xiao. Intelligent irrigation system based on Raspberry Pi and cloud platform [J]. Computer System & Application, 2022, 31(4): 123-129.
[9] 谭燕, 秦风元. 基于Raspberry Pi的室内智能灌溉系统设计与研究[J]. 节水灌溉, 2019(7): 105-108.
Tan Yan, Qin Fengyuan. Design and research of indoor intelligent irrigation system based on Raspberry Pi [J]. Water Saving Irrigation, 2019(7): 105-108.
[10] 许铭鋆. 基于Raspberry Pi的智能灌溉系统设计及其研究[D]. 广州: 广州大学, 2019.Xu Mingyun. Design and research of intelligent irrigation system based on Raspberry Pi [D]. Guangzhou: Guangzhou University, 2019.
[11] 刘振奎. 基于模糊控制的节水智能灌溉系统设计[J]. 安徽农学通报, 2021, 27(23): 138-140.
Liu Zhenkui. Design of watersaving intelligent irrigation system based on fuzzy control [J]. Anhui Agricultural Science Bulletin, 2021, 27(23): 138-140.
[12] 尹起. 机器学习预测参考作物蒸散量在智能灌溉系统中的应用研究[D]. 乌鲁木齐: 新疆大学, 2021.Yin Qi. Research on the application of machine learning to predict reference crop evapotranspiration in intelligent irrigation system [D]. Urumqi: Xinjiang University, 2021.
[13] 谢佩军, 张育斌. 阻尼累加离散灰色预测的Smith预估智能灌溉系统[J]. 中国农机化学报, 2022, 43(8): 158-165.
Xie Peijun, Zhang Yubin. Smith predictive intelligent irrigation system based on damping accumulated discrete grey prediction [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 158-165.
[14] Badi H, Hamza A, Hasan S. New method for optimization of static hand gesture recognition [J]. IEEE, 2017: 542-544.
[15] 吕孙云, 许银山, 熊莹, 等. 组合预测方法在需水预测中的应用[J]. 武汉大学学报(工学版), 2011, 44(5):565-570.
Lü Sunyun, Xu Yinshan, Xiong Ying, et al. Combined forecasting method for forecasting water demand [J]. Engineering Journal of Wuhan University, 2011, 44(5): 565-570.
[16] Li Yujie, Zhongmin Liang, Yiming Hu, et al. A multimodel integration method for monthly streamflow prediction: Modified stacking ensemble strategy [J]. Journal of Hydroinformatics, 2020, 22(2).
[17] Bo Qiuyu, Cheng Wuqun. Intelligent control of agricultural irrigation through water demand prediction based on artificial neural network [J]. Computational Intelligence and Neuroscience, 2021.
[18] 张智韬, 许崇豪, 谭丞轩, 等. 基于无人机热红外遥感的玉米地土壤含水率诊断方法[J]. 农业机械学报, 2020, 51(3): 180-190.
Zhang Zhitao, Xu Chonghao, Tan Chengxuan, et al. Diagnosis method of soil moisture content in corn field based on thermal infrared remote sensing of UAV [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 180-190.
[19] 张振华, 蔡焕杰, 杨润亚. 红外遥感估算春小麦农田土壤含水率的试验研究[J]. 农业工程学报, 2006(3): 84-87.
Zhang Zhenhua, Cai Huanjie, Yang Runya. Experiment on estimating soil moisture content of spring wheat field with infrared remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2006(3): 84-87.
[20] 鲍海波, 吴阳晨, 张国应, 等. 基于特征加权Stacking集成学习的净负荷预测方法[J]. 电力建设, 2022, 43(9): 104-116.
Bao Haibo, Wu Yangchen, Zhang Guoying, et al. Net load forecasting method based on featureweighted Stacking ensemble learning [J]. Electric Power Construction, 2022, 43(9): 104-116.
[21] 杨冰清, 高珊. 基于Stacking集成学习的蘑菇毒性判别研究[J]. 淮北师范大学学报(自然科学版), 2022, 43(3): 17-21.
Yang Bingqing, Gao Shan. A research on the toxicity of mushroom based on Stacking ensemble learning [J]. Journal of Huaibei Normal University (Natural Sciences), 2022, 43(3): 17-21.
[22] 孙明喆, 毕瑶家, 孙驰. 改进随机森林算法综述[J]. 现代信息科技, 2019, 3(20): 28-30.
Sun Mingzhe, Bi Yaojia, Sun Chi. A survey of improved random forest algorithms [J]. Modern Information Technology, 2019, 3(20): 28-30.
[23] 王锦程, 郁芸, 杨坤, 等. 基于BP神经网络的脑肿瘤MRI图像分割[J]. 生物医学工程研究, 2016, 35(4): 290-293.Wang Jincheng, Yu Yun, Yang Kun, et al. Brain tumor segmentation of MRI based on BP neural network [J]. Journal of Biomedical Engineering Research, 2016, 35(4): 290-293.
[24] 马志昂, 盖艾鸿, 程久苗. 基于BP人工神经网络的区域土地生态安全评价研究——以安徽省为例[J]. 中国农学通报, 2014, 30(23): 289-295.
Ma Zhiang, Gai Aihong, Cheng Jiumiao. Evaluation on ecological security of regional land based on BP artificial neural Network: A case of Anhui Province [J]. Chinese Agricultural Science Bulletin, 2014, 30(23): 289-295.
[25] 曾津, 周建军. 高维数据变量选择方法综述[J]. 数理统计与管理, 2017, 36(4): 678-692.Zeng Jin, Zhou Jianjun. Variable selection for highdimensional data model: A survey [J]. Mathematical Statistics and Management, 2017, 36(4): 678-692
[26] 王则玉, 谢香文, 刘国宏, 等. 干旱区绿洲滴灌成龄枣树耗水规律及作物系数[J]. 新疆农业科学, 2015, 52(4): 675-680.
Wang Zeyu, Xie Xiangwen, Liu Guohong, et al. Jujube drip irrigation water consumption and its crop coefficient in oasis of arid areas [J]. Xinjiang Agricultural Sciences, 2015, 52(4): 675-680.
[27] 孙博瑞. 基于LSTM神经网络的智能灌溉系统开发[D]. 阿拉尔: 塔里木大学, 2022.
Sun Borui. Development of intelligent irrigation system based on LSTM neural network [D]. Alaer: Tarim University, 2022
[28] 周少梁, 孙三民, 姚宝林, 等. 弥雾灌对枣园冠层环境和光合特性及产量品质的影响[J]. 农业机械学报, 2021, 52(5): 249-257.
Zhou Shaoliang, Sun Sanmin, Yao Baolin, et al. Effects of mist irrigation on canopy environment, photosynthetic characteristics, yield and quality of jujube orchard [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 249-257.
|