[1]
龚莉. 新疆棉花产业链利益分配问题研究[D]. 重庆: 重庆师范大学, 2019.
[2]
周楠, 晁腾飞, 胡黄卓. 新疆棉花产业存在的问题与对策研究[J]. 山西农经, 2021(14): 116-117.
[3]
白志刚. 棉叶螨在豫北地区棉田的发生规律及综防技术[J]. 陕西农业科学, 2012, 58(4): 247, 259.
[4]
秦占飞, 常庆瑞, 申健, 等. 引黄灌区水稻红边特征及SPAD高光谱预测模型[J]. 武汉大学学报(信息科学版), 2016, 41(9): 1168-1175.
Qin Zhanfei, Chang Qingrui, Shen Jian, et al. Red edge characteristics and SPAD estimation model using hyperspectral data for rice in Ningxia irrigation zone [J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1168-1175.
[5]
贺英, 邓磊, 毛智慧, 等. 基于数码相机的玉米冠层SPAD遥感估算[J]. 中国农业科学, 2018, 51(15): 2886-2897.
He Ying, Deng Lei, Mao Zhihui, et al. Remote sensing estimation of canopy SPAD value for maize based on digital camera [J]. Scientia Agricultura Sinica, 2018, 51(15): 2886-2897.
[6]
Peng Y, Gitelson A A. Application of chlorophyllrelated vegetation indices for remote estimation of maize productivity [J]. Agricultural and Forest Meteorology, 2011, 151(9): 1267-1276.
[7]
徐晋, 蒙继华. 农作物叶绿素含量遥感估算的研究进展与展望[J]. 遥感技术与应用, 2016, 31(1): 74-85.
Xu Jin, Meng Jihua. Overview on estimating crop chlorophyll content with remote sensing [J]. Remote Sensing Technology and Application, 2016, 31(1): 74-85.
[8]
Marenco R A, AntezanaVera S A, Nascimento H C S. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species [J]. Photosynthetica, 2009, 47(2): 184-190.
[9]
赵亮, 陈兵, 肖春华, 等. 棉花棉叶螨叶片遥感监测技术研究[J]. 甘肃农业大学学报, 2015, 50(5): 94-99.
Zhao Liang, Chen Bing, Xiao Chunhua, et al.Remote sensing monitoring technique on cotton leaves infected by spider mites [J]. Journal of Gansu Agricultural University, 2015, 50(5): 94-99.
[10]
崔美娜, 戴建国, 王守会, 等. 基于无人机多光谱影像的棉叶螨识别方法[J]. 新疆农业科学, 2018, 55(8): 1457-1466.
Cui Meina, Dai Jianguo, Wang Shouhui, et al. Research on identification method of mite infection cotton based on of UAV multispectral image [J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1457-1466.
[11]
贾丹, 陈鹏飞. 低空无人机影像分辨率对冬小麦氮浓度反演的影响[J]. 农业机械学报, 2020, 51(7): 164-169.
Jia Dan, Chen Pengfei. Effect of lowaltitude UAV image resolution on inversion of winter wheat nitrogen concentration [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 164-169.
[12]
史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2): 247-260.
Shi Zhou, Liang Zongzheng, Yang Yuanyuan, et al. Status and prospect of agricultural remote sensing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 247-260.
[13]
赵静, 杨焕波, 兰玉彬, 等. 基于无人机可见光图像的夏季玉米植被覆盖度提取方法[J]. 农业机械学报, 2019, 50(5): 232-240.
Zhao Jing, Yang Huanbo, Lan Yubin, et al. Extraction method of summer corn vegetation coverage based on visible light image of unmanned aerial vehicle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 232-240.
[14]
王丽爱, 马昌, 周旭东, 等. 基于随机森林回归算法的小麦叶片SPAD值遥感估算[J]. 农业机械学报, 2015, 46(1): 259-265.
Wang Liai, Ma Chang, Zhou Xudong, et al. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 259-265.
[15]
田军仓, 杨振峰, 冯克鹏,等. 基于无人机多光谱影像的番茄冠层SPAD预测研究[J]. 农业机械学报, 2020, 51(8): 178-188.
Tian Juncang, Yang Zhenfeng, Feng Kepeng, et al. Prediction of tomato canopy SPAD based on UAV multispectral image [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 178-188.
[16]
魏青, 张宝忠, 魏征, 等. 基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究[J]. 麦类作物学报, 2020, 40(3): 365-372.
Wei Qing, Zhang Baozhong, Wei Zheng, et al. Estimation of canopy chlorophyll content in winter wheat by UAV multispectral remote sensing [J]. Journal of Triticeae Crops, 2020, 40(3): 365-372.
[17]
陈浩, 冯浩, 杨祯婷, 等. 基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计[J]. 排灌机械工程学报, 2021, 39(6): 622-629.
Chen Hao, Feng Hao, Yang Zhenting, et al. Estimation of chlorophyll content of summer maize canopy based on UAV multispectral remote sensing [J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(6): 622-629.
[18]
田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11): 285-293.
Tian Minglu, Ban Songtao, Chang Qingrui, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAVbased imaging spectroradiometer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293.
[19]
孟沌超, 赵静, 兰玉彬, 等. 基于无人机可见光影像的玉米冠层SPAD反演模型研究[J]. 农业机械学报, 2020, 51(S2): 366-374.
Meng Dunchao, Zhao Jing, Lan Yubin, et al. SPAD inversion model of corn canopy based on UAV visible light image [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 366-374.
[20]
陈向东, 邓江洪. 基于可见光影像的夏季玉米植被覆盖度提取方法研究[J]. 实验技术与管理, 2019, 36(12): 131-136.
Chen Xiangdong, Deng Jianghong. Study on extraction method of vegetation coverage of summer maize based on visible image [J]. Experimental Technology and Management, 2019, 36(12): 131-136.
[21]
戴建国, 张国顺, 郭鹏, 等. 基于无人机遥感可见光影像的北疆主要农作物分类方法[J]. 农业工程学报, 2018, 34(18): 122-129.
Dai Jianguo, Zhang Guoshun, Guo Peng, et al. Classification method of main crops in northern Xinjiang based on UAV visible waveband images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 122-129.
[22]
吴智超, 李长春, 冯海宽, 等. 基于无人机数码影像的马铃薯覆盖度提取方法[J]. 农业机械学报, 2020, 51(3): 164-170.
Wu Zhichao, Li Changchun, Feng Haikuan, et al. Potato coverage extraction method based on digital image [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 164-170.
[23]
刘帅兵, 杨贵军, 景海涛, 等. 基于无人机数码影像的冬小麦氮含量反演[J]. 农业工程学报, 2019, 35(11): 75-85.
Liu Shuaibing, Yang Guijun, Jing Haitao, et al. Retrieval of winter wheat nitrogen content based on UAV digital image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 75-85.
[24]
裴鹏程. 利用无人机成像高光谱监测棉蚜为害等级研究[D]. 郑州: 河南农业大学, 2019.
[25]
杨丽丽, 张大卫, 罗君, 等. 基于SVM和AdaBoost的棉叶螨危害等级识别[J]. 农业机械学报, 2019, 50(2): 14-20.
Yang Lili, Zhang Dawei, Luo Jun, et al. Automatic recognition for cotton spider mites damage level based on SVM and AdaBoost [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 14-20.
[26]
牛庆林, 冯海宽, 杨贵军, 等. 基于无人机数码影像的玉米育种材料株高和LAI监测[J]. 农业工程学报, 2018, 34(5): 73-82.
Niu Qinglin, Feng Haikuan, Yang Guijun, et al. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 73-82.
[27]
Nie S, Wang C, Dong P, et al. Estimating leaf area index of maize using airborne discretereturn LiDAR data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3259-3266.
[28]
Bendig J, Yu K, Aasen H, et al. Combining UAVbased plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley [J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 79-87.
[29]
Woebbecke D M, Meyer G E, Bargen K V, et al. Plant species identification, size, and enumeration using machine vision techniques on nearbinary images [C]. Proceedings of SPIEThe International Society for Optical Engineering, 1993.
[30]
Neto J C. A combined statisticalsoft computing approach for classification and mapping weed species in minimumtillage systems [C]. AGRIS, FAO, UN, 2004.
[31]
Kataoka T, Kaneko T, Okamoto H, et al. Crop growth estimation system using machine vision [C]. Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME International Conference on. IEEE, 2003.
[32]
Louhaichi M, Borman M M, Johnson D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat [J]. Geocarto International, 2001, 16(1): 65-70.
[33]
Woebbecke D M, Meyer G E, Bargen K V, et al. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Transactions of the ASABE, 1995, 38(1): 259-269.
[34]
张培松, 孙毅明, 郭澎涛, 等. 基于数字图像分析技术的橡胶树叶片氮含量预测[J]. 热带作物学报, 2015, 36(12): 2120-2124.
Zhang Peisong, Sun Yiming, Guo Pengtao, et al. Study on predicting nitrogen content of rubber tree leaf by digital image analysis [J]. Chinese Journal of Tropical Crops, 2015, 36(12): 2120-2124.
[35]
Peuelas J, Gamon J A, Fredeen A L, et al. Reflectance indices associated with physiological changes in nitrogenand waterlimited sunflower leaves [J]. Remote sensing of Environment, 1994, 48(2): 135-146.
[36]
Hunt E R, Cavigelli M, Daughtry C S T, et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status [J]. Precision Agriculture, 2005, 6(4): 359-378.
[37]
邱耀炜, 沈蔚, 惠笑, 等. 基于WorldView-2数据和随机森林算法的遥感水深反演[J]. 遥感信息, 2019, 34(2): 75-79.
Qiu Yaowei, Shen Wei, Hui Xiao,et al. Water depth inversion based on WorldView-2 data and random forest algorithm [J]. Remote Sensing Information, 2019, 34(2): 75-79.
|