[ 1 ] 肖威, 陆静平. 甘蔗机械化收获技术现状分析[J]. 中国农机化学报, 2022, 43(2): 50-59, 142.
Xiao Wei, Lu Jingping. Analysis of sugarcane mechanized harvesting technology [J]. Journal of Chinese Agricultural Mechanization. 2022, 43(2): 50-59, 142.
[ 2 ] Elwakeel A E, Ahmed S F, Zein Eldin A M, et al. A review on sugarcane harvesting technology [J]. Al‑Azhar Journal of Agricultural Engineering, 2022, 2(1): 54-63.
[ 3 ] Palmute V. Floating base‑cutter assembly for use on sugar‑cane harvesters [P]. US Patent: 9, 801, 336, 2017-10-31.
[ 4 ] Sam R, Ridd P. Sugar cane harvester base‑cutter height sensing using electromagnetic induction technology [J]. Transactions of the ASAE-American Society of Agricultural Engineers, 1996, 39(6): 2291-2298.
[ 5 ] Page R L. Ground detection sensor for cane harvester base‑cutter height control [D]. James Cook University, 2006.
[ 6 ] 邹展曦, 武涛, 高泽锋, 等. 甘蔗收割机切割刀盘浮动控制系统的设计与试验[J]. 河南农业大学学报, 2018, 52(1): 73-79.
Zou Zhanxi, Wu Tao, Gao Zefeng, et al. Design and test of cut‑off auto control system for sugarcane billet harvester [J]. Journal of Henan Agricultural University, 2018, 52(1): 73-79.
[ 7 ] 黄亦其, 黄体森, 杨睿, 等. 基于机器视觉的甘蔗切割高度检测与试验[J]. 中国农机化学报, 2017, 38(9): 81-87.
Huang Yiqi, Huang Tisen, Yang Rui, et al. Detection and test of sugarcane cutting height based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(9): 81-87.
[ 8 ] 白秋薇, 简真, 吴永烽, 等. 基于切割压力的甘蔗收割机刀盘高度自动调节装置[J]. 农业工程学报, 2021, 37(3): 19-26.
Bai Qiuwei, Jian Zhen, Wu Yongfeng, et al. Automatic height‑adjustment for a cutter disk on a sugarcane harvester using cutting pressure [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(3): 19-26.
[ 9 ] 张宏群, 刘开辉, 郑峰, 等. 基于二维激光雷达植株高度测量系统的研究[J]. 电子测量技术, 2021, 44(4): 97-103.
Zhang Hongqun, Liu Kaihui, Zheng Feng, et al. Research on plant height measurement system based on two‑dimensional LiDAR [J]. Electronic Measurement Technology, 2021, 44(4): 97-103.
[10] Pozderac T, Velagić J, Osmanković D. 3D mapping based on fusion of 2D laser and IMU data acquired by unmanned aerial vehicle [C]. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2019: 1533-1538.
[11] 康高健. 雷达遥感中地物植被的电磁散射研究[D]. 北京: 中国科学院研究生院(电子学研究所), 2007.
[12] 王雪, 李登峰, 黄杉杉, 等. 激光雷达运动畸变去除的算法设计[J]. 自动化仪表, 2021, 42(5): 89-91.
Wang Xue, Li Dengfeng, Huang Shanshan, et al. Design of algorithn for removal of LiDAR motion distortion [J]. Process Automation Instruemention, 2021, 42(5): 89-91.
[13] 李昆祥, 王志山, 付俊辉, 等. 挂面精计量过程中挂面根数计数研究[J]. 粮食加工, 2022, 47(3): 21-26.
[14] 杨迪寒, 王承启, 于帅, 等. 基于OpenCV的路面裂缝检测装置[J]. 工业技术创新, 2022, 9(1): 49-54.
[15] 董小灵. 局部特征的局部敏感哈希专利二值化图像检索[J]. 电视技术, 2022, 46(5): 54-60, 66.
[16] 李成勇, 王莎, 陈成瑞. 基于CMOS图像采集的车道偏移识别系统设计与实现[J]. 中国测试, 2022, 48(6): 106-110.
[17] 李岩舟, 石奕峰, 涂伟, 等. 基于激光雷达的全生长周期甘蔗地行间自主导航研究[J]. 中国农机化学报, 2022, 43(3): 153-158.
Li Yanzhou, Shi Yifeng, Tu Wei, et al. Research on autonomous navigation between rows of sugarcane in the whole growth cycle based on LiDAR [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 153-158.
[18] 杨章静, 王镜宇, 黄璞, 等. 基于加权协同表示的人脸识别方法[J]. 计算机工程与设计, 2022, 43(6): 1785-1793.
[19] 黄艳堃, 邓玉辉, 孙光才, 等. 基于时间信息加权的ViSAR目标阴影跟踪算法[J]. 系统工程与电子技术, 2023, 45(10): 3065-3075.
[20] 陶旭, 余富强, 蔡金金, 等. 面向激光雷达点云数据的多结构树种识别[J]. 中国农机化学报, 2024, 45(5): 168-175.
Tao Xu, Yu Fuqiang, Cai Jinjin, et al. Multi‑structured tree species recognition for LiDAR point cloud data [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(5): 168-175.
|