[ 1 ] 刘燕德, 施宇, 蔡丽君, 等. 基于CARS算法的脐橙可溶性固形物近红外在线检测[J]. 农业机械学报, 2013, 44(9): 138-144.
Liu Yande, Shi Yu, Cai Lijun, et al. On‑line NIR detection model optimization of soluble solids content in navel orange based on CARS [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(9): 138-144.
[ 2 ] 庞新安. 近红外光谱技术及其在农产品品质分析中的应用[J]. 广西农业生物科学, 2007(1): 83-87.
Pang Xin'an. Near infrared spectrum technique and its application in quality analysis on farm produce [J]. Journal of Guangxi Agriculture and Biological Science, 2007(1): 83-87.
[ 3 ] Zhang Y, Chen Y, Wu Y, et al. Accurate and nondestructive detection of apple brix and acidity based on visible and near‑infrared spectroscopy [J]. Applied Optics, 2021, 60(13): 4021-4028.
[ 4 ] Xia Y, Fan S, Li J, et al. Optimization and comparison of models for prediction of soluble solids content in apple by online Vis/NIR transmission coupled with diameter correction method [J]. Chemometrics and Intelligent Laboratory Systems, 2020, 201: 104017.
[ 5 ] Wang J, Wang J, Chen Z, et al. Development of multi‑cultivar models for predicting the soluble solid content and firmness of European pear (Pyrus communis L.) using portable vis-NIR spectroscopy [J]. Postharvest Biology and Technology, 2017, 129: 143-151.
[ 6 ] Mishra P, Woltering E, Brouwer B, et al. Improving moisture and soluble solids content prediction in pear fruit using near‑infrared spectroscopy with variable selection and model updating approach [J]. Postharvest Biology and Technology, 2021, 171: 111348.
[ 7 ] Minas I S, Blanco‑Cipollone F, Sterle D. Accurate non‑destructive prediction of peach fruit internal quality and physiological maturity with a single scan using near infrared spectroscopy [J]. Food Chemistry, 2021, 335: 127626.
[ 8 ] Yuan L M, You L, Yang X, et al. Consensual regression of soluble solids content in peach by near infrared spectrocopy [J]. Foods, 2022, 11(8): 1095.
[ 9 ] Song J, Li G, Yang X, et al. Rapid analysis of soluble solid content in navel orange based on visible‑near infrared spectroscopy combined with a swarm intelligence optimization method [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117815.
[10] Santos C S P, Cruz R, Goncalves D B, et al. Non‑destructive measurement of the internal quality of citrus fruits using a portable NIR device [J]. Journal of AOAC International, 2021, 104(1): 61-67.
[11] 赵志磊, 王雪妹, 刘冬冬, 等. 基于BP-ANN和PLS的近红外光谱无损检测李果实品质的研究[J]. 光谱学与光谱分析, 2022, 42(9): 2836-2842.
Zhao Zhilei, Wang Xuemei, Liu Dongdong, et al. Quantitative analysis of soluble solids and titratable acidity content in Angeleno plum by near‑infrared spectroscopy with BP-ANN and PLS [J]. Spectroscopy and Spectral Analysis, 2022, 42(9): 2836-2842.
[12] Pérez‑Marín D, Paz P, Guerrero J E, et al. Miniature handheld NIR sensor for the on‑site non‑destructive assessment of post‑harvest quality and refrigerated storage behavior in plums [J]. Journal of Food Engineering, 2010, 99(3): 294-302.
[13] 刘燕德, 胡军, 欧阳玉平, 等. 赣南脐橙可溶性固形物近红外光谱在线无损检测[J]. 广东农业科学, 2016, 43(9): 105-111.
Liu Yande, Hu Jun, Ouyang Yuping, et al. Online detection of soluble solids content for Gannan navel by visible‑near infrared diffuse transmission spectroscopy [J]. Guangdong Agricultural Science, 2016, 43(9): 105-111.
[14] 李俊杰, 张绩, 汪小伟, 等. 近红外光谱大数据分析塔罗科血橙内在品质的研究[J]. 食品研究与开发, 2020, 41(20): 193-197, 209.
Li Junjie, Zhang Ji, Wang Xiaowei, et al. Study on internal quality of Tarocco blood orange based on large data analysis of near‑infrared spectroscopy [J]. Food Research and Development, 2020, 41 (20): 193-197, 209.
[15] 刘伟男. 基于深度学习的近红外光谱猪肉新鲜度检测研究[D].徐州: 中国矿业大学, 2022.
Liu Weinan. Study on pork freshness detection by near‑infrared spectroscopy based on deep learning [D]. Xuzhou: China University of Mining and Technology, 2022.
[16] Mishra P, Passos D. Multi‑output 1-dimensional convolutional neural networks for simultaneous prediction of different traits of fruit based on near‑infrared spectroscopy [J]. Postharvest Biology and Technology, 2022, 183: 111741.
[17] Huang Z, Zhu T, Li Z, et al. Non‑destructive testing of moisture and nitrogen content in Pinus Massoniana seedling leaves with NIRS based on MS-SC-CNN [J]. Applied Sciences, 2021, 11(6): 2754.
[18] Benmouna B, Garcia‑Mateos G, Sabzi S, et al. Convolutional neural networks for estimating the ripening state of fuji apples using visible and near‑infrared spectroscopy [J]. Food and Bioprocess Technology, 2022, 15(10): 2226-2236.
[19] 余怀鑫. 基于可见—近红外光谱技术的柑橘品质无损检测研究[D]. 武汉: 华中农业大学, 2021.
Yu Huaixin. Research on non‑destructive testing of citrus quality based on visible near‑infrared spectroscopy technology [D]. Wuhan: Huazhong Agricultural University, 2021.
[20] 温馨. 基于深度学习的水果糖度可见/近红外光谱无损检测方法研究[D]. 北京: 北京交通大学 , 2018.
Wen Xin. Research on non‑destructive determination technology of fruit sugar degree by visible/near‑infrared spectroscopy based on deep learning [D]. Beijing: Beijing Jiaotong University, 2018.
[21] 邢超. 基于深度神经网络的云环境服务故障识别方法[J]. 数据通信, 2022(4): 12-15.
Xing Chao. Fault identification method for cloud environment services based on deep neural networks [J]. Data Communication, 2022(4): 12-15.
|