[1] 李彩霞, 董邵云, 薄凯亮, 等. 黄瓜响应低温胁迫的生理及分子机制研究进展[J]. 中国蔬菜, 2019(5): 17-24.Li Caixia, Dong Shaoyun, Bo Kailiang, et al. Research progress in physiological and molecular mechanism of low temperature stress response in cucumber [J]. China Vegetables, 2019(5): 17-24.
[2] 周长吉. 日光温室高秧作物生产的吊蔓与放蔓技术[J]. 农业工程技术(温室园艺), 2012(10): 24, 26, 28, 30.
[3] 徐彦军, 刘燕, 李伟, 等. 不同落蔓方法对大棚黄瓜农艺性状的影响[J]. 长江蔬菜, 2017(10): 48-50.Xu Yanjun, Liu Yan, Li Wei, et al. Effect of different reducingvines methods on agronomic traits of greenhouse cucumber [J]. Journal of Changjiang Vegetables, 2017(10): 48-50.
[4] 尹义蕾, 陈永生, 程瑞锋, 等. 荷兰设施园艺智能化生产技术装备考察及启示[J]. 农业工程技术, 2018, 38(34): 75-81.
[5] Yamanaka R, Kawashima H. Development of cooling techniques for smallscale protected horticulture in mountainous areas in Japan [J]. Japan Agricultural Research Quarterly, 2021, 55(2): 117-125.
[6] 彭嘉舜. 温室落蔓装置设计与试验研究[D]. 沈阳: 沈阳农业大学, 2018.Peng Jiashun. Design and experimental study on releasing vine device for greenhouse [D]. Shenyang: Shenyang Agricultural University, 2018.
[7] 苑进, 韩孝武, 刘雪美, 等. 一种单株吊蔓高度可调的多垄落蔓装置[P]. 中国专利: CN211793215U, 2020-10-30.
[8] 侯永, 李恺, 王春辉, 等. 温室果菜自动落蔓与疏蔓装置研制及应用[J]. 农业工程技术, 2021, 41(10): 50-53.
[9] 赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6): 1-7.Zhao Chunjiang. Current situations and prospects of smart agriculture [J]. Journal of South China Agricultural University, 2021, 42(6): 1-7.
[10] Khan M A, Akram T, Sharif M, et al. An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection [J]. Multimedia Tools and Applications, 2020, 79: 18627-18656.
[11] Li Y, Luo Z, Wang F, et al. Hyperspectral leaf imagebased cucumber disease recognition using the extended collaborative representation model [J]. Sensors, 2020, 20(14): 4045.
[12] Kianat J, Khan M A, Sharif M, et al. A joint framework of feature reduction and robust feature selection for cucumber leaf diseases recognition [J]. Optik, 2021, 240: 166566.
[13] Tan L, Lu J, Jiang H. Tomato leaf diseases classification based on leaf images: A comparison between classical machine learning and deep learning methods [J]. AgriEngineering, 2021, 3(3): 542-558.
[14] 王志彬, 王开义,王书锋, 等. 基于动态集成的黄瓜叶部病害识别方法[J]. 农业机械学报, 2017, 48(9): 46-52.
Wang Zhibin, Wang Kaiyi, Wang Shufeng, et al. Recognition method of cucumber leaf diseases with dynamic ensemble learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 46-52.
[15] 赵春江, 文朝武, 林森, 等. 基于级联卷积神经网络的番茄花期识别检测方法[J]. 农业工程学报, 2020, 36(24): 143-152.
Zhao Chunjiang, Wen Chaowu, Lin Sen, et al. Tomato florescence recognition and detection method based on cascaded neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 143-152.
[16] 雷旺雄, 卢军. 葡萄采摘机器人采摘点的视觉定位[J]. 江苏农业学报, 2020, 36(4): 1015-1021.Lei Wangxiong, Lu Jun. Visual positioning method for picking point of grape picking robot [J]. Jiangsu Journal of Agricultural sciences, 2020, 36(4): 1015-1021.
[17] 刘丽娟, 窦佩佩,王慧. 自然环境下重叠与遮挡苹果图像识别方法研究[J]. 中国农机化学报, 2021, 42(6): 174-181.
Liu Lijuan, Dou Peipei,Wang Hui, et al. Image recognition algorithm research of overlapped apple fruits in the natural environment [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 174-181.
[18] 叶中华, 赵明霞, 贾璐. 复杂背景农作物病害图像识别研究[J]. 农业机械学报, 2021, 52(S1): 118-124, 147.
Ye Zhonghua, Zhao Mingxia,Jia Lu, et al. Image recognition of crop diseases in complex background [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 118-124, 147.
[19] 黄林生, 罗耀武, 杨晓冬. 基于注意力机制和多尺度残差网络的农作物病害识别[J]. 农业机械学报, 2021, 52(10): 264-271.
Huang Linsheng, Luo Yaowu,Yang Xiaodong, et al. Crop disease recognition based on attention mechanism and multiscale residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 264-271.
[20] Xiong L, Zhang D, Li K, et al. The extraction algorithm of color disease spot image based on Otsu and watershed [J]. Soft Computing, 2020, 24: 7253-7263.
[21] 姜苗苗, 史国友, 许栓梅, 等. 基于自适应K均值聚类和霍夫变换的船舶干舷视觉检测[J]. 上海海事大学学报, 2021, 42(2): 34-39.Jang Miaomiao, Shi Guoyou, Xu Shuanmei, et al. Ship freeboard visual detection based on adaptive Kmeans clustering and Hough transform [J]. Journal of Shanghai Maritime University, 2021, 42(2): 34-39.
|