[ 1 ] 郑子漂, 徐海江, 林涛, 等. 新疆长绒棉育成品种演变趋势及综合评价[J]. 中国农业大学学报, 2022, 27(6): 55-70.
Zheng Zipiao, Xu Haijiang, Lin Tao, et al. Evolution trend and comprehensive evaluation of growing varieties of long staple cotton in Xinjiang [J]. Journal of China Agricultural University, 2022, 27(6): 55-70.
[ 2 ] 李亚楠. 基于视觉的棉花发育状态自动检测技术研究[D]. 武汉: 华中科技大学, 2018.
[ 3 ] 段宇飞, 孙记委, 王焱清, 等. 基于改进卷积神经网络的油茶果壳籽分选方法[J]. 农业工程学报, 2023, 39(3): 154-161.
Duan Yufei, Sun Jiwei, Wang Yanqing, et al. Sorting camellia oleifera husk and seed using an improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(3): 154-161.
[ 4 ] 刘平, 刘立鹏, 王春颖, 等. 基于机器视觉的田间小麦开花期判定方法[J]. 农业机械学报, 2022, 53(3): 251-258.
Liu Ping, Liu Lipeng, Wang Chunying, et al. Determination method of field wheat flowering period baesd on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 251-258.
[ 5 ] Zhang Y, Yang G, Liu Y, et al. An improved YOLO network for unopened cotton boll detection in the field [J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3): 2193-2206.
[ 6 ] Liu J, Lai H, Jia Z. Image segmentation of cotton based on YCbCcr color space and fisher discrimination analysis [J]. Acta Agronomica Sinica, 2011, 420(2): 274-281.
[ 7 ] 徐建鹏, 王杰, 徐祥, 等. 基于RAdam卷积神经网络的水稻生育期图像识别[J]. 农业工程学报, 2021, 37(8): 143-150.
Xu Jianpeng, Wang Jie, Xu Xiang, et al. Image recognition for different developmental stages of rice by RAdam deep convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 143-150.
[ 8 ] Chen Q Z, Lai H C, Wang X, et al. An cotton image segmentation algorithm based on support vector machine [J]. Computer Engineering, 2013, 39(5): 266-269.
[ 9 ] Li Y, Cao Z, Lu H, et al. In‑field cotton detection via region‑based semantic image segmentation [J]. Computers and Electronics in Agriculture, 2016, 127: 475-486.
[10] Sun S, Li C, Paterson A H, et al. Image processing algorithms for infield single cotton boll counting and yield prediction [J]. Computers and Electronics in Agriculture, 2019, 166: 104976.
[11] Patrício D I, Rieder R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review [J]. Computers and Electronics in Agriculture, 2018, 153: 69-81.
[12] Xu R, Li C, Paterson A H, et al. Aerial images and convolutional neural network for cotton bloom detection [J]. Frontiers in Plant Science, 2018, 8: 2235.
[13] Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex [J]. Nature Neuroscience, 1999, 2(11): 1019-1025.
[14] Serre T, Wolf L, Bileschi S, et al. Robust object recognition with cortex‑like mechanisms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 411-426.
[15] Shariatmadar Z S, Faez K. A data‑driven and biologically inspired preprocessing scheme to improve visual object recognition [J]. Computational Intelligence and Neuroscience, 2021, 2021: 1-13.
[16] Ruigang F, Biao L, Yinghui G, et al. Accelerated HMAX model based on improved SIFT feature points [C]. 2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS). IEEE, 2015: 485-489.
[17] Norizadeh Cherloo M, Shiri M, Daliri M R. An enhanced HMAX model in combination with SIFT algorithm for object recognition [J]. Signal, Image and Video Processing, 2020, 14: 425-433.
[18] Sufikarimi H, Mohammadi K. Role of the secondary visual cortex in HMAX model for object recognition [J]. Cognitive Systems Research, 2020, 64: 15-28.
|