中国农机化学报 ›› 2023, Vol. 44 ›› Issue (12): 119-128.DOI: 10.13733/j.jcam.issn.2095-5553.2023.12.019
秦昌友1,杨艳山1,顾峰玮2,陈盼阳3,秦维彩1
出版日期:
2023-12-15
发布日期:
2024-01-16
基金资助:
Qin Changyou1, Yang Yanshan1, Gu Fengwei2, Chen Panyang3, Qin Weicai1
Online:
2023-12-15
Published:
2024-01-16
摘要: 计算机视觉是一个涉及使机器“看到”的领域。该技术使用相机和计算机代替人眼来识别,跟踪和测量目标以进行进一步的图像处理。随着计算机视觉的发展,这种技术在现代农业领域得到广泛的应用,并在其发展中发挥关键作用。首先,详细阐述计算机视觉的概念、组成部分和工作原理。其次,介绍国内外计算机视觉技术在水产养殖、畜牧养殖、农作物生长监测、农作物病虫害监视、果蔬识别定位与采摘等领域的研究进展与应用情况。通过分析发现,现有技术可以促进现代农业自动化发展,实现低成本、高效率、高精度的优势。然而,未来技术将继续向现代农业新的应用领域拓展,需要克服的技术问题会更多。最后,系统总结和分析计算机视觉技术在现代农业的应用与挑战,探讨未来的机遇和前景,为研究者提供最新的参考。
中图分类号:
秦昌友, 杨艳山, 顾峰玮, 陈盼阳, 秦维彩. 现代农业领域中计算机视觉技术的运用与发展[J]. 中国农机化学报, 2023, 44(12): 119-128.
Qin Changyou, Yang Yanshan, Gu Fengwei, Chen Panyang, Qin Weicai. Application and development of computer vision technology in modern agriculture[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(12): 119-128.
[1] 马彦平, 白由路, 高祥照, 等. 计算机视觉技术在农业生产中的应用与展望[J]. 中国农业资源与区划, 2009, 30(4): 21-27. Ma Yanping, Bai Youlu, Gao Xiangzhao, et al. Application and expectation of computer vision technology in agriculture production [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2009, 30(4): 21-27. [2] 赵娜, 赵平, 高轶军. 机器视觉技术在我国现代农业生产中的应用研究[J]. 天津农学院学报, 2015, 22(2): 55-58. Zhao Na, Zhao Ping, Gao Yijun. Study on application of machine vision technology to modern agriculture in China [J]. Journal of Tianjin Agricultural University, 2015, 22(2): 55-58. [3] 李娟, 朱学岩, 葛凤丽, 等. 基于计算机视觉的水下海参识别方法研究[J]. 中国农机化学报, 2020, 41(7): 171-177. Li Juan, Zhu Xueyan, Ge Fengli, et al. Research on under water sea cucumber identification based Ion computer vision [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 171-177. [4] 周航, 杜志龙, 武占元, 等. 机器视觉技术在现代农业装备领域的应用进展[J]. 中国农机化学报, 2017, 38(11): 86-92. Zhou Hang, Du Zhilong, Wu Zhanyuan, et al. Application progress of machine vision technology in the field of modern agricultural equipment [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(11): 86-92. [5] 石卫坤, 彭森. 计算机视觉技术在农业生产中的应用与展望[J]. 农家参谋, 2019(19): 23. [6] 殷悦, 张慧春, 郑加强. 基于双目立体视觉的植物三维重建系统[J]. 中国农机化学报, 2021, 42(3): 129-135. Yin Yue, Zhang Huichun, Zheng Jiaqiang. Three dimensional reconstruction system of plant based on binocular stereo vision [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 129-1335. [7] 杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181. Yang Tao, Li Xiaoxiao. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171-181. [8] 郝文影. 计算机视觉技术在农业上的应用[J]. 现代农村科技, 2018(3): 92. [9] 段延娥, 李道亮, 李振波, 等. 基于计算机视觉的水产动物视觉特征测量研究综述[J]. 农业工程学报, 2015, 31(15): 1-11. Duan Yane, Li Daoliang, Li Zhenbo, et al. Review on visual characteristic measurement research of aquatic animals based on computer vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 1-11. [10] Li D, Du L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish [J]. Artificial Intelligence Review, 2021, 55(5): 1-40. [11] Daoliang Li, Qi Wang, Xin Li, et al. Recent advances of machine vision technology in fish classification [J]. ICES Journal of Marine Science, 2022, 79(2): 263-284. [12] 丁顺荣, 肖珂. 基于粒子群优化SVM和多特征融合的鱼类分类方法研究[J]. 中国农机化学报, 2020, 41(11): 113-118, 170. Ding Shunrong, Xiao Ke. Improving fish classification method in particle swarm optimization SVM and multifeature fusion [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(11): 113-118, 170. [13] 李艳君, 黄康为, 项基. 基于立体视觉的动态鱼体尺寸测量[J].农业工程学报, 2020, 36(21): 220-226. Li Yanjun, Huang Kangwei, Xiang Ji. Measurement of dynamic fish dimension based on stereoscopic vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 220-226. [14] Cao J, Xu L. Research on counting algorithm of residual feeds in aquaculture based on machine vision [C]. 2018 IEEE 3rd International Conference on Image, Vision and Computing, 2018: 498-503. [15] Zhou C, Lin K, Xu D, et al. Computer vision and feeding behavior based intelligent feeding controller for fish in aquaculture[C]. Proceedings of the International Conference on Intelligent Agriculture, 2017: 113-122. [16] 关辉, 许璐蕾. 基于机器视觉的智能鱼群健康状况监测系统[J]. 物联网技术, 2019, 9(10): 13-14, 17. [17] Hwang K H, Choi J W. Machine vision based weight prediction for flatfish[C]. 2018 18th International Conference on Control, Automation and Systems, 2018: 1628-1631. [18] Ji D, Zhou J, Xu M, et al. Automatic counting algorithm of fry based on machine vision system [C]. 2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA), 2021: 104-109. [19] 黎袁富, 杜家豪, 莫家浩, 等. 基于YOLOX的鱼苗检测与计数[J]. 电子元器件与信息技术, 2022, 6(5): 192-194. [20] 金耀, 何秀文, 万世主, 等. 基于YOLO v3的生猪个体识别方法[J]. 中国农机化学报, 2021, 42(2): 178-183. Jin Yao,He Xiuwen, Wan Shizhu, et al. Individual pig identification method based on YOLO v3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 178-183. [21] Kashiha M, Bahr C, Ott S, et al. Automatic identification of marked pigs in a pen using image pattern recognition [J]. Computers and Electronics in Agriculture, 2013, 93: 111-120. [22] Ahrendt P, Gregersen T, Karstoft H. Development of a realtime computer vision system for tracking loosehoused pigs [J]. Computers & Electronics in Agriculture, 2011, 76(2): 169-174. [23] 张建龙, 庄晏榕, 周康, 等. 基于机器视觉的育肥猪分群系统设计与试验[J]. 农业工程学报, 2020, 36(17): 174-181. Zhang Jianlong, Zhuang Yanrong, Zhou Kang, et al. Design of automatic group sorting system for fattening pigs based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 174-181. [24] Nasirahmadi A, Sturm B, Edwards S, et al. Deep learning and machine vision approaches for posture detection of individual pigs [J]. Sensors, 2019, 19(17): 3738. [25] 赵正东, 王虎虎, 徐幸莲. 基于机器视觉的肉鸡胴体淤血检测技术[J]. 农业工程学报, 2022, 38(16): 330-338. Zhao Zhengdong, Wang Huhu, Xu Xinglian. Broiler carcass congestion detection technology using machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 330-338. [26] 尚绛岚. 基于计算机视觉的智能牧场应用研究[D]. 包头: 内蒙古科技大学, 2020. Shang Jianglan. Research on the application of intelligent pasture based on computer vision [D]. Baotou: Inner Mongolia University of Science & Technology, 2020. [27] 薛鸿翔, 沈明霞, 刘龙申, 等. 基于改进YOLO v5s的经产母猪发情检测方法研究[J]. 农业机械学报, 2023, 54(1): 263-270. Xue Hongxiang, Shen Mingxia, Liu Longshen, et al. Estrus detection method of parturient sows based on improved YOLO v5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 263-270. [28] 白强, 高荣华, 赵春江, 等. 基于改进YOLOV5s网络的奶牛多尺度行为识别方法[J]. 农业工程学报, 2022, 38(12): 163-172. Bai Qiang, Gao Ronghua, Zhao Chunjiang, et al. Multiscale behavior recognition method for dairy cows based on improved YOLOV5s network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(12): 163-172. [29] Li Guoming, Huang Yanbo, Chen Zhiqian, et al. Practices and applications of convolutional neural networkbased computer vision systems in animal farming: A review [J]. Sensors, 2021, 21(4). [30] 刘双喜, 孙林林, 王震, 等. 复杂背景下苹果树花量模糊聚类准确估测模型[J]. 中国农机化学报, 2017, 38(8): 74-81. Liu Shuangxi, Sun Linlin, Wang Zhen, et al. Fuzzy clustering accurate estimation model of apple tree flowers with complex background [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 74-81. [31] 刘双喜, 张磊, 张宏建, 等. 基于新梢叶节距的苹果树叶片氮含量检测[J]. 中国农机化学报, 2019, 40(7): 89-96. Liu Shuangxi, Zhang Lei, Zhang Hongjian, et al. Nitrogen content tests for apple tree leaves based on leaf node pitches of shoots [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(7): 89-96. [32] Sun M, Si J, An D, et al, Nondestructive measurement of tomato seedlings during their growth based on machine vision [C]. 2006 Second International Symposium on Plant Growth Modeling and Applications, 2006: 255-258. [33] McCarthy Alison, Raine Steven. Automated variety trial plot growth and flowering detection for maize and soybean using machine vision [J]. Computers and Electronics in Agriculture, 2022, 194: 106727. [34] Setyawan R A, Basuki A, Wey C Y. Machine visionbased urban farming growth monitoring system [C]. 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar, 2020: 183-187. [35] Loresco P J, Valenzuela I, Gamara R P, et al. Growth stage identification for cherry tomato using image processing techniques [C]. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, 2020: 1-6. [36] 郭文娟, 冯全, 李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展[J]. 中国农机化学报, 2022, 43(10): 157-166. Guo Wenjuan, Feng Quan, Li Xiangzhou. Research progress of convolutional neural network model based on crop disease detection and recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166. [37] 魏晨, 国树金, 荆茂焱, 等. 美国白蛾幼虫网幕图像识别算法及其视觉伺服系统研究[J]. 中国农机化学报, 2022, 43(11): 62-68. Wei Chen, Guo Shujin, Jing Maoyan, et al. Study on the in mage recognition algorithm and visual servo system of Hyphantria cunea larvae nets [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 62-68. [38] Nancy P, Pallathadka H, Naved M, et al. Deep learning and machine learning based efficient framework for image based plant disease classification and detection [C]. 2022 International Conference on Advanced Computing Technologies and Applications, 2022: 1-6. [39] 党满意, 孟庆魁, 谷芳, 等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报, 2020, 36(2): 193-200. Dang Manyi, Meng Qingkui, Gu Fang, et al. Rapid recognition of potato late blight based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 193-200. [40] 王珊, 薛新宇, 郭祥雨. 基于机器视觉的油菜菌核病分级检测研究[J]. 中国农机化学报, 2022, 43(5): 47-53. Wang Shan, Xue Xinyu, Guo Xiangyu. Classification and detection of rapeseed sclerotium disease based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 47-53. [41] Zhang Y, Ren T, Li C, et al. Research on recognition method of common corn diseases based on computer vision [C]. 2019 11th International Conference on Intelligent HumanMachine Systems and Cybernetics, 2019: 328-331. [42] Hua S, Xu M, Xu Z, et al. Multifeature decision fusion algorithm for disease detection on crop surface based on machine vision [J]. Neural Computing and Applications, 2022, 34(12): 9471-9484. [43] Agnihotri V. Machine learning based pest identification in paddy plants [C]. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology, 2019: 246-250. [44] 孙丰刚, 王云露, 兰鹏, 等. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报, 2022, 38(11): 171-179. Sun Fenggang, Wang Yunlu, Lan Peng, et al. Identification of apple fruit diseases using improved YOLOv5s and transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 171-179. [45] Thakur Poornima Singh, Khanna Pritee, Sheorey Tanuja, et al. Trends in visionbased machine learning techniques for plant disease identification: A systematic review [J]. Expert Systems With Applications, 2022, 208: 118117. [46] Li Z, Yuan X, Wang C. A review on structural development and recognitionlocalization methods for endeffector of fruitvegetable picking robots [J]. International Journal of Advanced Robotic Systems, 2022, 4: 52. [47] 成伟, 张文爱, 冯青春, 等. 基于改进YOLOv3的温室番茄果实识别估产方法[J]. 中国农机化学报, 2021, 42(4): 176-182. Cheng Wei, Zhang Wenai, Feng Qingchun, et al. Method of greenhouse tomato fruit identification and yield estimation based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 176-182. [48] 陈品岚, 张小花, 朱立学, 等. 基于树莓派及深度学习的柑橘识别系统设计[J]. 中国农机化学报, 2022, 43(9): 131-136. Chen Pinlan, Zhang Xiaohua, Zhu Lixue, et al. Citrus recognition system design based on Raspberry Pi and deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 131-136. [49] Yin G, Xie Y, Yun J, et al. Based on machine vision fruit target detection method[J]. IOP Conference Series Earth and Environmental Science, 2020, 428: 012072. [50] 陈燕, 王佳盛, 曾泽钦, 等. 大视场下荔枝采摘机器人的视觉预定位方法[J]. 农业工程学报, 2019, 35(23): 48-54. Chen Yan, Wang Jiasheng, Zeng Zeqin, et al. Research on vision prepositioning for litchi picking robot under large field of view [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 48-54. [51] Wang M, Wei J, Yuan J, et al. A research for intelligent cotton picking robot based on machine vision [C]. 2008 International Conference on Information and Automation, 2008: 800-803. [52] 冯俊惠, 李志伟, 戎有丽, 等. 基于改进Hough圆变换算法的成熟番茄果实识别[J]. 中国农机化学报, 2021, 42(4): 190-196. Feng Junhui, Li Zhiwei, Rong Youli, et al. Identification of mature tomatoes based on an algorithm of modified circular Hough transform [J]. Journal of Chinese Agricultural Mechanization,2021, 42(4): 190-196. [53] 马志艳, 朱熠, 张徐康, 等. 基于视觉的玉米苗期作物识别与定位方法研究[J]. 中国农机化学报, 2020, 41(9): 131-137. Ma Zhiyan, Zhu Yi, Zhang Xukang, et al. Research on the method of crop recognition and location in maize seedlings stage based on vision [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(9): 131-137. [54] 吕小莲, 吕小荣, 卢秉福. 西红柿采摘机器人视觉系统的设计与研究[J]. 传感器与微系统, 2010, 29(6): 21-24. Lü Xiaolian, Lü Xiaorong, Lu Bingfu. Design and research on tomatoharvesting robot visual system [J]. Transducer and Microsystem Technologies, 2010, 29(6): 21-24. [55] 陈志伟. 基于YOLOX的马铃薯种薯芽眼检测与自动切块试验研究[D]. 泰安: 山东农业大学, 2022. Chen Zhiwei. YOLOX-based potato seed potato sprout eye detection and automatic cutting test research [D]. Taian: Shandong Agricultural University, 2022. [56] Su F, Zhao Y, Shi Y, et al. Tree trunk and obstacle detection in apple orchard based on improved YOLOv5s model [J]. Agronomy. 2022, 12(10): 2427. [57] Tang Y, Chen M, Wang C, et al. Recognition and localization methods for visionbased fruit picking robots: A review [J]. Frontiers in Plant Science, 2020, 11: 510. [58] Tian Z, Ma W, Yang Q, et al. Application status and challenges of machine vision in plant factory: A review [J]. Information Processing in Agriculture, 2022, 9(2): 195-211. [59] 田志伟, 马伟, 张梅, 等. 温室智能装备系列之一百三十 植物工厂中机器视觉技术应用现状与挑战[J].农业工程技术, 2022, 42(1): 36-45. |
[1] | 黄家才, 汪涛, 张铎, 唐安, 高芳征. 基于改进YOLOv4的草莓果柄叶识别与定位[J]. 中国农机化学报, 2023, 44(9): 205-213. |
[2] | 李航, 廖映华, 黄波. 基于改进DQN算法的茶叶采摘机械手路径规划[J]. 中国农机化学报, 2023, 44(8): 198-205. |
[3] | 王春桃, , , , 梁炜健, 郭庆文, 钟浩, 甘雨, 肖德琴, , . 农业害虫智能视觉检测研究综述[J]. 中国农机化学报, 2023, 44(7): 207-213. |
[4] | 周显沁, 韩震宇, 刘成源. 基于改进卷积神经网络与图像处理的蚕茧识别方法[J]. 中国农机化学报, 2023, 44(5): 100-106. |
[5] | 周鹏飞, 蒙贺伟, , , 梁荣庆, 张炳成, 坎杂, , . 基于OpenCV-Python的土壤颗粒动态休止角试验[J]. 中国农机化学报, 2023, 44(5): 214-222. |
[6] | 旷达, 段凌凤. 作物表型自动化检测技术全球研发态势分析——基于专利视角[J]. 中国农机化学报, 2023, 44(5): 223-229. |
[7] | 王金武, 杨会民, 陈毅飞, 周欣, 蒋永新, 张佳喜. 国内仿形技术在农用机械上的应用分析[J]. 中国农机化学报, 2023, 44(4): 31-39. |
[8] | 王恒, 张维懿, 李成松, 王沛, 王丽红, . 基于图像处理的果树滴水线导航路径检测方法研究[J]. 中国农机化学报, 2023, 44(3): 183-190. |
[9] | 任浩, 李丽, 卢世博, 陈静姚, 张云峰, . 基于深度学习的复杂自然环境下桑树枝干识别方法[J]. 中国农机化学报, 2023, 44(2): 182-188. |
[10] | 杨霄, 王朕, , 赵伟, 徐晶, 文玲梅, 徐敏. 鱼病实时检测系统的研制与试验[J]. 中国农机化学报, 2023, 44(11): 130-137. |
[11] | 王冬, , 段炼, 赵闰, 顾华兵, , 黎寿丰, 赵振华. 基于图像处理的鸡冠面积和色级测定方法研究[J]. 中国农机化学报, 2023, 44(10): 152-158. |
[12] | 梁喜凤, 花瑞, 杨铭涛. 番茄枝叶修剪机械手视觉伺服控制系统研究[J]. 中国农机化学报, 2022, 43(7): 8-13. |
[13] | 李博, 江朝晖, 洪石兰, 饶元, 张武, . 基于边缘智能的茶叶病害识别[J]. 中国农机化学报, 2022, 43(6): 175-180. |
[14] | 阮承治, 陈茜, 陈旭, 赵升云, 孙月平, 赵德安. 颜色空间直方图相交法的竹条色差分类检测系统研究[J]. 中国农机化学报, 2022, 43(5): 85-92. |
[15] | 李金阳, 张伟, 康烨, 许秀英, 亓立强, 石文强, . 基于无人机遥感技术的大豆苗数估算研究[J]. 中国农机化学报, 2022, 43(4): 83-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296