[1]
柏云爱, 宋大海, 张富强, 等. 油茶籽油与橄榄油营养价值的比较[J]. 中国油脂, 2008, 33(3): 39-41.
[2]
段宇飞, 皇甫思思, 王焱清, 等. 基于机器视觉的油茶果果壳与茶籽分选方法研究[J]. 中国农机化学报, 2020, 41(6): 171-178.
Duan Yufei, Huangfu Sisi, Wang Yanqing, et al. Sorting method of seeds and shells of the camellia oleifera fruit based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6): 171-178.
[3]
徐克生, 杜鹏东, 汤晶宇, 等. 油茶果预处理装备及发展趋势[J]. 林业机械与木工设备, 2021, 49(4): 8-14.
Xu Kesheng, Du Pengdong, Tang Jingyu, et al. Pretreatment equipment and development trend of camellia oleifera fruit [J]. Forestry Machinery & Woodworking Equipment, 2021, 49(4): 8-14.
[4]
周敬东, 李敏慧, 周明刚, 等. 油茶果的模糊聚类色选算法[J]. 中国农机化学报, 2015, 36(4): 94-99.
Zhou Jingdong, Li Minhui, Zhou Minggang, et al. Color sorting algorithm for camellia oleosa seed recognition based on fuzzy cmeans clustering [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(4): 94-99.
[5]
周敬东, 黄云朋, 李敏慧, 等. 一种基于CCD相机的通道式油茶果色选机系统[J]. 中国农机化学报, 2015, 36(5): 128-133.
Zhou Jingdong, Huang Yunpeng, Li Minhui, et al. Channel color sorter of camellia oleifera fruit based on CCD camera [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5): 128-133.
[6]
吕梦棋, 张芮祥, 贾浩, 等. 基于改进ResNet玉米种子分类方法研究[J]. 中国农机化学报, 2021, 42(4): 92-98.
Lü Mengqi, Zhang Ruixiang, Jia Hao, et al. Research on seed classification based on improved ResNet [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 92-98.
[7]
林丽惠, 魏毅, 潘俊虹. 基于卷积神经网络的武夷岩茶叶片分类方法[J]. 宁德师范学院学报(自然科学版), 2021, 33(4): 363-369.
Lin Lihui, Wei Yi, Pan Junhong. Classification of Wuyi rock tealeaves based on convolutional neural network [J]. Journal of Ningde Normal University (Natural Science), 2021, 33(4): 363-369.
[8]
苏宝峰, 沈磊, 陈山, 等. 基于注意力机制的葡萄品种多特征分类方法[J]. 农业机械学报, 2021, 52(11): 226-233, 252.
Su Baofeng, Shen Lei, Chen Shan, et al. Multifeatures identification of grape cultivars based on attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 226-233, 252.
[9]
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90.
[10]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Arxiv Preprint Arxiv: 1409.1556, 2014.
[11]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[12]
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]. International Conference on Machine Learning. PMLR, 2015: 448-456.
[13]
Zhu X, Cheng D, Zhang Z, et al. An empirical study of spatial attention mechanisms in deep networks [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6688-6697.
[14]
王凯诚, 鲁华祥, 龚国良, 等. 基于注意力机制的显著性目标检测方法[J]. 智能系统学报, 2020, 15(5): 956-963.
Wang Kaicheng, Lu Huaxiang, Gong Guoliang, et al. Salient object detection method based on the attention mechanism [J]. CAAI Transactions on Intelligent Systems, 2020, 15(5): 956-963.
[15]
任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
Ren Huan, Wang Xuguang. Review of attention mechanism [J]. Journal of Computer Applications, 2021, 41(S1): 1-6.
[16]
黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述[J]. 自动化学报, 2014, 40(4): 561-576.
Li Wanyi, Wang Peng, Qiao Hong. A survey of visual attention based methods for object tracking [J]. Acta Automatica Sinica, 2014, 40(4): 561-576.
[17]
Choi H, Cho K, Bengio Y. Finegrained attention mechanism for neural machine translation[J]. Neurocomputing, 2018, 284: 171-176.
[18]
张梦雨. 基于ResNet和注意力机制的花卉识别[J]. 计算机与现代化, 2021(4): 61-67.
Zhang Mengyu. Flower recognition based on ResNet and attention mechanism [J]. Computer and Modernization, 2021(4): 61-67.
[19]
Jia Deng, Wei Dong, Socher, et al. ImageNet: A largescale hierarchical image database[C]. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 248-255.
[20]
黄毅, 段修生, 孙世宇, 等. 基于改进sigmoid激活函数的深度神经网络训练算法研究[J]. 计算机测量与控制, 2017, 25(2): 126-129.
Huang Yi, Duan Xiusheng, Sun Shiyu, et al. A study of training algorithm in deep neural networks based on sigmoid activation function [J]. Computer Measurement & Control, 2017, 25(2): 126-129.
|