[1] 赵金龙, 刘永杰, 唐芳林, 等. 中国草原自然公园建设的必要性[J]. 中国草地学报, 2020, 42(4): 1-7.
Zhao Jinlong, Liu Yongjie, Tang Fanglin, et al. Evaluation of the necessity of grassland natural park establishment in China [J]. Chinese Journal of Grassland, 2020, 42(4): 1-7.
[2] 白永飞, 赵玉金, 王扬, 等. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设[J]. 中国科学院院刊, 2020, 35(6): 675-689.
Bai Yongfei, Zhao Yujin, Wang Yang, et al. Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in Northern China [J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(6): 675-689.
[3] Han D, Wang G, Xue B, et al. Evaluation of semiarid grassland degradation in North China from multiple perspectives [J]. Ecological Engineering, 2018, 112: 41-50.
[4] Aili A, Xu H, Kasim T, et al. Origin and transport pathway of dust storm and its contribution to particulate air pollution in northeast edge of Taklimakan desert, China [J]. Atmosphere, 2021, 12(1): 113.
[5] 屠志方, 李梦先, 孙涛. 第五次全国荒漠化和沙化监测结果及分析[J]. 林业资源管理, 2016(1): 1-5, 13.
[6] 韩芳, 刘朋涛, 牛建明, 等. 50a来内蒙古荒漠草原气候干燥度的空间分布及其演变特征[J]. 干旱区研究, 2013, 30(3): 449-456.
[7] 赛胜宝. 内蒙古北部荒漠草原带的严重荒漠化及其治理[J]. 干旱区资源与环境, 2001(4): 34-39.
[8] 闫岩, 陈英富, 赵国春, 等. 内蒙古中东部浅覆盖区荒漠化的驱动因素及其演化的地质依据[J]. 地质与勘探, 2019, 55(2): 630-640.
[9] 康萨如拉, 牛建明, 张庆, 等. 羊草草原退化演替中的状态转变和可持续性[J]. 生态学杂志, 2020, 39(9): 3147-3154.
Kang Sarula, Niu Jianming, Zhang Qing, et al. State transition and sustainability during grazinginduced degradation of Leymus chinensis grassland [J]. Chinese Journal of Ecology, 2020, 39(9): 3147-3154.
[10] GB 19377—2003, 天然草地退化、沙化、盐渍化的分级指标[S].
[11] Oliveira T, Freitas D, Gianezini M, et al. Agricultural land use change in the Brazilian Pampa Biome: The reduction of natural grasslands [J]. Land Use Policy, 2017, 63: 394-400.
[12] 郭庆华, 胡天宇, 马勤, 等. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435.
Guo Qinghua, Hu Tianyu, Ma Qin, et al. Advances for the new remote sensing technology in ecosystem ecology research [J]. Chinese Journal of Plant Ecology, 2020, 44(4): 418-435.
[13] 史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2): 247-260.
Shi Dan, Liang Zongzheng, Yang Yuanyuan, et al. Status and prospect of agricultural remote sensing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 247-260.
[14] 赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014(12): 277-293.
Zhao Chunjiang. Advances of research and application in remote sensing for agriculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014(12): 277-293.
[15] 刘忠, 万炜, 黄晋宇, 等. 基于无人机遥感的农作物长势关键参数反演研究进展[J]. 农业工程学报, 2018, 34(24): 60-71.
Liu Zhong, Wan Wei, Huang Jinyu, et al. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 60-71.
[16] 李春明, 逯杉婷, 远松灵, 等. 基于Faster R-CNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-176.
Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176.
[17] 王铎, 温长吉, 王希龙, 等. 基于深度卷积条件生成对抗网络的虫害分类算法研究[J]. 中国农机化学报, 2020, 41(6): 179-187.
Wang Duo, Wen Changji, Wang Xilong, et al. Generating pest identification classification against network based on deep convolution conditions [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6): 179-187.
[18] 江帆, 刘梦莹, 刘勇. 综合运用影像对象多种特征的土地利用/土地覆被分类方法探讨——以兰州秦王川地区为例[J]. 兰州大学学报(自然科学版), 2016, 52(1): 37-42.
Jiang Fan, Liu Mengying, Liu Yong. Approach on classification of land use and land cover based on integrated spectral, textural and shape features multiple features of image objects—A case study in Qingwangchuan area of Lanzhou [J]. Journal of Lanzhou University(Natural Sciences), 2016, 52(1): 37-42.
[19] 刘舒, 朱航. 基于超高空间分辩率无人机影像的面向对象土地利用分类方法[J]. 农业工程学报, 2020, 36(2): 87-94.
Liu Shu, Zhu Hang. Objectoriented land use classification based on ultrahigh resolution images taken by unmanned aerial vehicle [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 87-94.
[20] 黄亦其, 刘琪, 赵建晔, 等. 基于深度卷积神经网络的红树林物种无人机监测研究[J]. 中国农机化学报, 2020, 41(2): 141-146, 189.
Huang Yiqi, Liu Qi, Zhao Jianye, et al. Research on unmanned aerial surveillance of mangrove species based on deep convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 141-146, 189.
[21] Fang B, Li Y, Zhang H, et al. Semisupervised deep learning classification for hyperspectral image based on dualstrategy sample selection [J]. Remote Sensing, 2018, 10(4): 574.
[22] Luca B, Alberto F, Mauro J, et al. Precise agriculture: Effective deep learning strategies to detect pest insects [J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(2): 246-258.
[23] 王少杰, 武文波, 徐其志. VGG与DoG结合的光学遥感影像精确配准方法[J]. 航天返回与遥感, 2021, 42(5): 76-84.
Wang Shaojie, Wu Wenbo, Xu Qizhi. An accurate registration method for optical remote sensing images based on VGG and DoG [J]. Spacecraft Recovery & Remote Sensing, 2021, 42(5): 76-84.
[24] 潘占磊, 王忠武, 韩国栋, 等. 短花针茅荒漠草原甲烷通量对增温和施氮的响应[J]. 生态环境学报, 2016, 25(2): 209-216.
Pan Zhanlei, Wang Zhongwu, Han Guodong, et al. Responses of methane fluxes on warming and nitrogen addition in Stipabreviflora desert steppe [J]. Ecology and Environmental Sciences, 2016, 25(2): 209-216.
[25] 韩梦琪, 王忠武, 靳宇曦, 等. 短花针茅荒漠草原物种多样性及生产力对长期不同放牧强度的响应[J]. 西北植物学报, 2017, 37(11): 2273-2281.
Han Mengqi, Wang Zhongwu, Jin Yuxi, et al. Response of species diversity and productivity to longterm grazing in the Stipabreviflora desert steppe [J]. Acta Botanica BorealiOccidentalia Sinica, 2017, 37(11): 2273-2281.
[26] 李慧, 李雪梦, 姚庆智, 等. 基于BiologECO方法的两种不同草原中5种不同植物根际土壤微生物群落特征[J]. 微生物学通报, 2020, 47(9): 2947-2958.
Li Hui, Li Xuemeng, Yao Qingzhi, et al. BiologECO analysis of rhizosphere soil microbial community characteristics of five different plants in two different grasslands [J]. Microbiology, 2020, 47(9): 2947-2958.
[27] 魏峰, 何明一, 冯燕, 等. 基于矩阵分解的高光谱数据特征提取[J]. 红外与毫米波学报, 2014, 33(6): 674-679.
Wei Feng, He Mingyi, Feng Yan, et al. Feature extraction on matrix factorization for hyperspectral data [J]. Journal of Infrared and Millimeter Waves, 2014, 33(6): 674-679.
[28] 李镇, 张岩, 杨松, 等. QuickBird影像目视解译法提取切沟形态参数的精度分析[J]. 农业工程学报, 2014, 30(20): 179-186.
Li Zhen, Zhang Yan, Yang Song, et al. Error assessment of extracting morphological parameters of bank gullies by manual visual interpretation based on QuickBird imagery [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 179-186.
[29] Wang W G, Song W, Wang G Y, et al. Image recovery and recognition: A combining method of matrix norm regularization [J]. IET Image Processing, 2019, 13(8): 1246-1253.
[30] Wang W, Qin J, Zhang Y, et al. TNNL: A novel image dimension reduction method for face image recognition [J]. Digital Signal Processing, 2021, 115(99): 103082.
[31] 张锡鹏, 毕玉革, 杨红艳, 等. 基于高光谱遥感的荒漠化草原草种类分类模型研究[J]. 光学技术, 2020, 46(4): 483-488.
Zhang Xipeng, Bi Yuge, Yang Hongyan, et al. Classification model of dominant species in desertification grassland based on hyperspectral remote sensing [J]. Optical Technique, 2020, 46(4): 483-488.
[32] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [J]. IEEE, 2016, 90: 770-778.
|