[ 1 ] 赵军, 田海韬. 利用机器视觉检测马铃薯外部品质方法综述[J]. 图学学报, 2017, 38(3): 382-387.
Zhao Jun, Tian Haitao. The applications of potato external quality detection using machine vision [J]. Journal of Graphics, 2017, 38(3): 382-387.
[ 2 ] 周竹, 黄懿, 李小昱, 等. 基于机器视觉的马铃薯自动分级方法[J]. 农业工程学报, 2012, 28(7): 178-183.
Zhou Zhu, Huang Yi, Li Xiaoyu, et al. Automatic detecting and grading method of potatoes based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7): 178-183.
[ 3 ] 李玉华, 李天华, 牛子孺, 等. 基于色饱和度三维几何特征的马铃薯芽眼识别[J]. 农业工程学报, 2018, 34(24): 158-164.
Li Yuhua, Li Tianhua, Niu Ziru, et al. Potato bud eyes recognition based on three‑dimensional geometric features of color saturation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 158-164.
[ 4 ] Thien P Q, Liou N S. The development of on‑line surface defect detection system for jujubes based on hyperspectral images [J]. Computers and Electronics in Agriculture, 2022, 194: 106743.
[ 5 ] Arshaghi A, Ashourin M, Ghabeli L. Detection and classification of potato diseases potato using a new convolution neural network architecture [J]. Traitement du Signal, 2021, 38(6): 1783-1791.
[ 6 ] Wang C L, Xiao Z F. Potato surface defect detection based on deep transfer learning [J]. Agriculture, 2021, 11(9): 863.
[ 7 ] Lecun Y, Bottou L, Bengio Y, et al. Gradient‑based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[ 8 ] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90.
[ 9 ] Simonyan K, Zisserman A. Very deep convolutional networks for large‑scale image recognition [J]. arXiv preprint arXiv: 1409. 1556, 2014.
[10] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [J]. arXiv preprint arXiv: 1512. 03385, 2015.
[11] 易振通, 吴瑰, 官端正, 等. 轻量化卷积神经网络的研究综述[J]. 工业控制计算机, 2022, 35(10): 109-111, 114.
Yi Zhentong, Wu Gui, Guan Duanzheng, et al. Survey of research on lightweight convolutional neural networks [J]. Industrial Control Computer, 2022, 35(10): 109-111, 114.
[12] 杨森, 冯全, 张建华, 等. 基于轻量卷积网络的马铃薯外部缺陷无损分级[J]. 食品科学, 2021, 42(10): 284-289.
Yang Sen, Feng Quan, Zhang Jianhua, et al. Nondestructive classification of defects in potatoes based on lightweight convolutional neural network [J]. Food Science, 2021, 42(10): 284-289.
[13] Park J, Woo S, Lee J Y, et al. BAM: Bottleneck attention module [J]. arXiv preprint arXiv: 1807. 06514, 2018.
[14] 彭红星, 徐慧明, 刘华鼐. 基于改进ShuffleNet V2的轻量化农作物害虫识别模型[J]. 农业工程学报, 2022, 38(11): 161-170.
Peng Hongxing, Xu Huiming, Liu Huanai. Lightweight agricultural crops pest identification model using improved ShuffleNet V2 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 161-170.
[15] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. The European Conference on Computer Vision (ECCV) , 2018: 3-19.
[16] Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3 [C].2019 IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[17] Hu J, Shen L, Albanie S, et al. Squeeze‑and‑excitation networks [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[18] Wang Q L, Wu B G, Zhu P F, et al. ECA—Net: Efficient channel attention for deep convolutional neural networks [J]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
|