[1] 夏俊芳, 张国忠, 许绮川, 等. 多熟制稻作区水田旋耕埋草机的结构与性能[J]. 华中农业大学学报, 2008, 27(2): 331-334.
Xia Junfang, Zhang Guozhong, Xu Qichuan, et al. Research on the mechanized technology of rotary tillage and stubblemulch for paddy field under multiple rice cropping system [J]. Journal of Huazhong Agricultural University, 2008, 27(2): 331-334.
[2] 谭芳林. 机械法治理互花米草效果及其对滩涂土壤性状影响研究[J]. 湿地科学, 2008, 6(4): 526-530.
Tan Fanglin. Effect of the method combining cutting with machine boat on controlling spartina alterniflora and its impact on wetland soil characteristics [J]. Wetland Science, 2008, 6(4): 256-530.
[3] 王峰. 浅析现代农机装备技术发展与农机维修工程[J]. 南方农机, 2022, 53(10): 165-167.
[4] 许绮川. 加快湖北省机耕船产业发展的建议[J]. 湖北农机化, 2014(4): 9-11.
[5] 姬长英, 沈子尧, 顾宝兴, 等. 基于点云图的农业导航中障碍物检测方法[J]. 农业工程学报, 2015, 31(7): 173-179.
Ji Changying, Shen Ziyao, Gu Baoxing, et al. Obstacle detection based on point clouds in application of agricultural navigation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 173-179.
[6] 薛金林, 董淑娴, 范博文. 基于信息融合的农业自主车辆障碍物检测方法[J]. 农业机械学报, 2018, 49(S1): 29-34.
Xue Jinlin, Dong Shuxian, Fan Bowen. Detection of obstacles based on information fusion for autonomous agricultural vehicles [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 29-34.
[7] 李乐, 张茂军, 熊志辉, 等. 基于内容理解的单幅静态街道景图像深度估计[J]. 机器人, 2011, 33(2): 174-180.
Li Le, Zhang Maojun, Xiong Zhihui, et al. Depth estimation from a single still image of street scene based on content understanding [J]. Robot, 2011, 33(2): 174-180.
[8] 丁伟利, 李勇, 王文锋, 等. 基于轮廓特征理解的城市道路图像深度估计[J]. 光学学报, 2014, 34(7): 173-179.
Ding Weili, Li Yong, Wang Wenfeng, et al. Depth estimation of urban road image based on contour understanding [J]. Acta Optica Sinica, 2014, 34(7): 173-179.
[9] 查志华, 周文静, 吴杰. 基于迁移学习Faster R-CNN模型田间红提葡萄果穗的识别[J]. 石河子大学学报(自然科学版), 2021, 39(1): 26-31.
Cha Zhihua, Zhou Wenjing, Wu Jie. Identification of red globe grape cluster in grapery with Faster R-CNN model based on transfer learning [J]. Journal of Shihezi University (Natural Science), 2021, 39(1): 26-31.
[10] 黄华毅, 马晓航, 扈丽丽, 等. Fast R-CNN深度学习和无人机遥感相结合在松材线虫病监测中的初步应用研究[J]. 环境昆虫学报, 2021, 43(5): 1295-1303.
[11] Shi Q, Li C, Guo B, et al. Manipulatorbased autonomous inspections at road checkpoints: Application of faster YOLO for detecting large objects [J]. Defence Technology, 2022, 18(6): 937-951.
[12] 王淑青, 顿伟超, 黄剑锋, 等. 基于YOLOv5的瓷砖表面缺陷检测[J]. 包装工程, 2022, 43(9): 217-224.
Wang Shuqing, Dun Weichao, Huang Jianfeng, et al. Ceramic tile surface defect detection based on YOLOv5 [J]. Packaging Engineering, 2022, 43(9): 217-224.
[13] 刘建政, 梁鸿, 崔学荣, 等. 融入特征融合与特征增强的SSD目标检测[J]. 计算机工程与应用, 2022, 58(11): 150-159.
Liu Jianzheng, Liang Hong, Cui Xuerong, et al. SSD visual target detector based on feature integration and feature enhancement [J]. Computer Engineering and Applications, 2022, 58(11): 150-159.
[14] 齐继超, 何丽, 袁亮, 等. 基于单目相机与激光雷达融合的SLAM方法[J]. 电光与控制, 2022, 29(2): 99-102, 112.
Qi Jichao, He Li, Yuan Liang, et al. SLAM method based on fusion of monocular camera and Lidar camera and Lidar [J]. Electronics Optics & Control, 2022, 29(2): 99-102, 112.
[15] 魏建胜, 潘树国, 田光兆, 等. 农业车辆双目视觉障碍物感知系统设计与试验[J]. 农业工程学报, 2021, 37(9): 55-63.
Wei Jiansheng, Pan Shuguo, Tian Guangzhao, et al. Design and experiments of the binocular visual obstacle perception system for agricultural vehicles [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 55-63.
[16] Yu Zihao, Liu Jin, Yang Haima, et al. Threedimensional surface reconstruction based on edge detection and reliability sorting algorithm [J]. Laser & Optoelectronics Progress, 2020, 57(24).
[17] Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[18] Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[19] Zhang Z Y. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
|